-
Notifications
You must be signed in to change notification settings - Fork 141
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
(wip) for Zariski coverage on CommRing
(with Max Zeuner)
- Loading branch information
1 parent
bd6f5de
commit fac763b
Showing
3 changed files
with
108 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
{-# OPTIONS --safe #-} | ||
module Cubical.Categories.Site.Instances.ZariskiCommRing where | ||
|
||
-- TODO: clean up imports | ||
open import Cubical.Foundations.Prelude | ||
open import Cubical.Foundations.Function | ||
open import Cubical.Foundations.HLevels | ||
open import Cubical.Foundations.Equiv | ||
open import Cubical.Foundations.Structure | ||
open import Cubical.Foundations.Isomorphism | ||
-- open import Cubical.Foundations.Powerset | ||
|
||
open import Cubical.Data.Unit | ||
open import Cubical.Data.Nat using (ℕ) | ||
open import Cubical.Data.Sigma | ||
open import Cubical.Data.FinData | ||
|
||
open import Cubical.Algebra.Ring | ||
open import Cubical.Algebra.CommRing | ||
open import Cubical.Algebra.CommRing.Localisation | ||
open import Cubical.Algebra.CommRing.Ideal | ||
open import Cubical.Algebra.CommRing.FGIdeal | ||
|
||
open import Cubical.Categories.Category | ||
open import Cubical.Categories.Instances.CommRings | ||
open import Cubical.Categories.Site.Coverage | ||
open import Cubical.Categories.Constructions.Slice | ||
|
||
open import Cubical.HITs.PropositionalTruncation | ||
|
||
open Category hiding (_∘_) | ||
open isUnivalent | ||
open isIso | ||
open RingHoms | ||
open IsRingHom | ||
|
||
private | ||
variable | ||
ℓ ℓ' ℓ'' : Level | ||
|
||
-- module _ (R' : CommRing ℓ) {n : ℕ} (f : FinVec (fst R') (suc n)) where | ||
-- open isMultClosedSubset | ||
-- open CommRingTheory R' | ||
-- open RingTheory (CommRing→Ring R') | ||
-- open Sum (CommRing→Ring R') | ||
-- open CommIdeal R' | ||
-- open InvertingElementsBase R' | ||
-- open Exponentiation R' | ||
-- open CommRingStr ⦃...⦄ | ||
-- | ||
-- private | ||
-- R = fst R' | ||
-- ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal | ||
-- ⟨ V ⟩ = ⟨ V ⟩[ R' ] | ||
-- ⟨f₀,⋯,fₙ⟩ = ⟨ f ⟩[ R' ] | ||
|
||
open Coverage | ||
|
||
record UniModVec (R : CommRing ℓ) : Type ℓ where | ||
open CommRingStr (str R) | ||
open CommIdeal R using (_∈_) | ||
|
||
field | ||
n : ℕ | ||
f : FinVec ⟨ R ⟩ n | ||
isUniMod : 1r ∈ ⟨ f ⟩[ R ] | ||
|
||
open SliceOb | ||
|
||
zariskiCoverage : Coverage (CommRingsCategory {ℓ = ℓ} ^op) ℓ ℓ-zero | ||
fst (covers zariskiCoverage R) = UniModVec R | ||
fst (snd (covers zariskiCoverage R) um) = Fin n | ||
where | ||
open UniModVec um | ||
S-ob (snd (snd (covers zariskiCoverage R) um) i) = R[1/ f i ]AsCommRing | ||
where | ||
open UniModVec um | ||
open InvertingElementsBase R | ||
S-arr (snd (snd (covers zariskiCoverage R) um) i) = /1AsCommRingHom | ||
where | ||
open UniModVec um | ||
open InvertingElementsBase.UniversalProp R (f i) | ||
pullbackStability zariskiCoverage {c = R} um {d = R'} φ = | ||
∣ um' , | ||
(λ i → | ||
let | ||
module R = InvertingElementsBase.UniversalProp R (um .f i) | ||
module R' = InvertingElementsBase.UniversalProp R' (um' .f i) | ||
open InvertingElementsBase R' renaming (R[1/_]AsCommRing to R'[1/_]AsCommRing) using () | ||
(ψ , comm) , _ = | ||
R.S⁻¹RHasUniversalProp | ||
R'[1/ um' .f i ]AsCommRing | ||
(R'./1AsCommRingHom ∘r φ) | ||
{!!} | ||
in | ||
∣ i , ψ , RingHom≡ {!sym comm!} ∣₁) | ||
∣₁ | ||
where | ||
open UniModVec | ||
um' : UniModVec R' | ||
um' .n = um .n | ||
um' .f i = φ $r um .f i | ||
um' .isUniMod = {!!} |