Skip to content

Commit

Permalink
ugh...
Browse files Browse the repository at this point in the history
  • Loading branch information
aljungstrom committed Jan 23, 2024
1 parent b7716a4 commit f7524eb
Showing 1 changed file with 20 additions and 19 deletions.
39 changes: 20 additions & 19 deletions Cubical/Cohomology/EilenbergMacLane/EilenbergSteenrod.agda
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,22 @@ module _ where
Hmap∙ (pos n) = coHomHom∙ n
Hmap∙ (negsuc n) f = idGroupHom

compAx : (n : ℤ) {A B C : Pointed ℓ'}
(g : B →∙ C) (f : A →∙ B)
compGroupHom (Hmap∙ n g) (Hmap∙ n f)
≡ Hmap∙ n (g ∘∙ f)
compAx (pos n) g f = Σ≡Prop (λ _ isPropIsGroupHom _ _)
(funExt (ST.elim (λ _ isSetPathImplicit)
λ a cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousEM n) refl)))
compAx (negsuc n) g f = Σ≡Prop (λ _ isPropIsGroupHom _ _) refl

idAx : (n : ℤ) {A : Pointed ℓ'}
Hmap∙ n (idfun∙ A) ≡ idGroupHom
idAx (pos n) = Σ≡Prop (λ _ isPropIsGroupHom _ _)
(funExt (ST.elim (λ _ isSetPathImplicit)
λ f cong ∣_∣₂ (ΣPathP (refl , sym (lUnit (snd f))))))
idAx (negsuc n) = refl

suspMap : (n : ℤ) {A : Pointed ℓ'}
AbGroupHom (coHomRedℤ G (sucℤ n) (Susp (typ A) , north))
(coHomRedℤ G n A)
Expand Down Expand Up @@ -175,6 +191,8 @@ module _ where

satisfies-ES : {ℓ ℓ'} (G : AbGroup ℓ) coHomTheory {ℓ'} (coHomRedℤ G)
Hmap (satisfies-ES G) = coHomRedℤ.Hmap∙
HMapComp (satisfies-ES G) = coHomRedℤ.compAx
HMapId (satisfies-ES G) = coHomRedℤ.idAx
fst (Suspension (satisfies-ES G)) n = GroupIso→GroupEquiv (coHomRedℤ.suspMapIso n)
snd (Suspension (satisfies-ES G)) f (pos n) =
funExt (ST.elim (λ _ isSetPathImplicit) λ f
Expand Down Expand Up @@ -286,27 +304,10 @@ module _ where
invGroupEquiv (GroupIso→GroupEquiv lUnitGroupIso^)

open coHomTheoryGen
private
compAx : {ℓ ℓ'} (G : AbGroup ℓ) (n : ℤ) {A B C : Pointed ℓ'}
(g : B →∙ C) (f : A →∙ B)
compGroupHom (coHomRedℤ.Hmap∙ {G = G} n g) (coHomRedℤ.Hmap∙ n f)
≡ coHomRedℤ.Hmap∙ n (g ∘∙ f)
compAx G (pos n) g f = Σ≡Prop (λ _ isPropIsGroupHom _ _)
(funExt (ST.elim (λ _ isSetPathImplicit)
λ a cong ∣_∣₂ (→∙Homogeneous≡ (isHomogeneousEM n) refl)))
compAx G (negsuc n) g f = Σ≡Prop (λ _ isPropIsGroupHom _ _) refl

idAx : {ℓ ℓ'} (G : AbGroup ℓ) (n : ℤ) {A : Pointed ℓ'}
coHomRedℤ.Hmap∙ {G = G} n (idfun∙ A) ≡ idGroupHom
idAx G (pos n) = Σ≡Prop (λ _ isPropIsGroupHom _ _)
(funExt (ST.elim (λ _ isSetPathImplicit)
λ f cong ∣_∣₂ (ΣPathP (refl , sym (lUnit (snd f))))))
idAx G (negsuc n) = refl

satisfies-ES-gen : {ℓ ℓ'} (G : AbGroup ℓ) coHomTheoryGen {ℓ'} (coHomRedℤ G)
Hmap (satisfies-ES-gen G) = coHomTheory.Hmap (satisfies-ES G)
HMapComp (satisfies-ES-gen G) = compAx G
HMapId (satisfies-ES-gen G) = idAx G
HMapComp (satisfies-ES-gen G) = coHomTheory.HMapComp (satisfies-ES G)
HMapId (satisfies-ES-gen G) = coHomTheory.HMapId (satisfies-ES G)
Suspension (satisfies-ES-gen G) = coHomTheory.Suspension (satisfies-ES G)
Exactness (satisfies-ES-gen G) = coHomTheory.Exactness (satisfies-ES G)
Dimension (satisfies-ES-gen G) = coHomTheory.Dimension (satisfies-ES G)
Expand Down

0 comments on commit f7524eb

Please sign in to comment.