Skip to content

Commit

Permalink
cleanup aff sch
Browse files Browse the repository at this point in the history
  • Loading branch information
mzeuner committed Jan 17, 2024
1 parent 9b40562 commit 947871f
Showing 1 changed file with 16 additions and 19 deletions.
35 changes: 16 additions & 19 deletions Cubical/Categories/Instances/ZFunctors.agda
Original file line number Diff line number Diff line change
Expand Up @@ -404,6 +404,18 @@ module _ {ℓ : Level} where
(funExt λ _ makeNatTransPath (funExt₂ λ _ _ refl))


module _ (X : ℤFunctor) where
open isIso
private instance _ = (CompOpenDistLattice .F-ob X) .snd
-- better name?
X≅⟦1⟧ : NatIso X ⟦ 1l ⟧ᶜᵒ
N-ob (trans X≅⟦1⟧) _ φ = φ , refl
N-hom (trans X≅⟦1⟧) _ = funExt λ _ Σ≡Prop (λ _ squash/ _ _) refl
inv (nIso X≅⟦1⟧ B) = fst
sec (nIso X≅⟦1⟧ B) = funExt λ _ Σ≡Prop (λ _ squash/ _ _) refl
ret (nIso X≅⟦1⟧ B) = funExt λ _ refl


module _ (X : ℤFunctor) where
open Join (CompOpenDistLattice .F-ob X)
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice (CompOpenDistLattice .F-ob X)))
Expand Down Expand Up @@ -456,28 +468,13 @@ module _ {ℓ : Level} where
-- the canonical one element affine cover of a representable
module _ (A : CommRing ℓ) where
open AffineCover
open isIso

private
U₁ : CompactOpen (Sp .F-ob A)
N-ob U₁ B _ = let instance _ = B .snd in
D B 1r
N-hom U₁ {y = B} φ = let instance _ = ZariskiLattice B .snd in
funExt (λ _ cong (D B) (sym (φ .snd .pres1)) ∙ sym (∨lRid _))

SpA≅U₁ : NatIso (Sp .F-ob A) ⟦ U₁ ⟧ᶜᵒ
N-ob (trans SpA≅U₁) _ φ = φ , refl
N-hom (trans SpA≅U₁) _ = funExt λ _ Σ≡Prop (λ _ squash/ _ _) refl
inv (nIso SpA≅U₁ B) = fst
sec (nIso SpA≅U₁ B) = funExt λ _ Σ≡Prop (λ _ squash/ _ _) refl
ret (nIso SpA≅U₁ B) = funExt λ _ refl
private instance _ = (CompOpenDistLattice ⟅ Sp ⟅ A ⟆ ⟆) .snd

singlAffineCover : AffineCover (Sp .F-ob A)
n singlAffineCover = 1
U singlAffineCover zero = U₁
covers singlAffineCover =
makeNatTransPath (funExt₂ λ B _ let instance _ = ZariskiLattice B .snd in ∨lRid _)
isAffineU singlAffineCover zero = ∣ A , SpA≅U₁ ∣₁
U singlAffineCover zero = 1l
covers singlAffineCover = ∨lRid _
isAffineU singlAffineCover zero = ∣ A , X≅⟦1⟧ (Sp ⟅ A ⟆) ∣₁


-- qcqs-schemes as Zariski sheaves (local ℤ-functors) with an affine cover in the sense above
Expand Down

0 comments on commit 947871f

Please sign in to comment.