Skip to content

Commit

Permalink
update to new interface for comm ring homs
Browse files Browse the repository at this point in the history
  • Loading branch information
felixwellen committed Aug 4, 2024
1 parent 4b39489 commit 39ed7e2
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 21 deletions.
17 changes: 7 additions & 10 deletions Cubical/AlgebraicGeometry/Functorial/ZFunctors/OpenSubscheme.agda
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ open import Cubical.Data.Nat using (ℕ)

open import Cubical.Data.FinData

open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Localisation
open import Cubical.Algebra.Semilattice
Expand Down Expand Up @@ -66,8 +65,7 @@ module StandardOpens {ℓ : Level} (R : CommRing ℓ) (f : R .fst) where
open isIsoC
open DistLatticeStr ⦃...⦄
open CommRingStr ⦃...⦄
open IsRingHom
open RingHoms
open IsCommRingHom
open IsLatticeHom
open ZarLat

Expand All @@ -84,7 +82,7 @@ module StandardOpens {ℓ : Level} (R : CommRing ℓ) (f : R .fst) where
D = yonedaᴾ ZarLatFun R .inv (ZL.D R f)

SpR[1/f]≅⟦Df⟧ : NatIso (Sp .F-ob R[1/ f ]AsCommRing) ⟦ D ⟧ᶜᵒ
N-ob (trans SpR[1/f]≅⟦Df⟧) B φ = (φ ∘r /1AsCommRingHom) , ∨lRid _ ∙ path
N-ob (trans SpR[1/f]≅⟦Df⟧) B φ = (φ ∘cr /1AsCommRingHom) , ∨lRid _ ∙ path
where
open CommRingHomTheory φ
open IsSupport (ZL.isSupportD B)
Expand All @@ -98,18 +96,18 @@ module StandardOpens {ℓ : Level} (R : CommRing ℓ) (f : R .fst) where
path : ZL.D B (φ .fst (f /1)) ≡ 1l
path = supportUnit _ isUnitφ[f/1]

N-hom (trans SpR[1/f]≅⟦Df⟧) _ = funExt λ _ Σ≡Prop (λ _ squash/ _ _) (RingHom≡ refl)
N-hom (trans SpR[1/f]≅⟦Df⟧) _ = funExt λ _ Σ≡Prop (λ _ squash/ _ _) (CommRingHom≡ refl)

inv (nIso SpR[1/f]≅⟦Df⟧ B) (φ , Dφf≡D1) = invElemUniversalProp B φ isUnitφf .fst .fst
where
instance _ = ZariskiLattice B .snd
isUnitφf : φ .fst f ∈ B ˣ
isUnitφf = unitLemmaZarLat B (φ $r f) (sym (∨lRid _) ∙ Dφf≡D1)
isUnitφf = unitLemmaZarLat B (φ $cr f) (sym (∨lRid _) ∙ Dφf≡D1)

sec (nIso SpR[1/f]≅⟦Df⟧ B) =
funExt λ _ Σ≡Prop (λ _ squash/ _ _) (RingHom≡ (invElemUniversalProp _ _ _ .fst .snd))
funExt λ _ Σ≡Prop (λ _ squash/ _ _) (CommRingHom≡ (invElemUniversalProp _ _ _ .fst .snd))
ret (nIso SpR[1/f]≅⟦Df⟧ B) =
funExt λ φ cong fst (invElemUniversalProp B (φ ∘r /1AsCommRingHom) _ .snd (φ , refl))
funExt λ φ cong fst (invElemUniversalProp B (φ ∘cr /1AsCommRingHom) _ .snd (φ , refl))

isAffineD : isAffineCompactOpen D
isAffineD = ∣ R[1/ f ]AsCommRing , SpR[1/f]≅⟦Df⟧ ∣₁
Expand All @@ -128,8 +126,7 @@ module _ {ℓ : Level} (R : CommRing ℓ) (W : CompactOpen (Sp ⟅ R ⟆)) where
open DistLatticeStr ⦃...⦄
open CommRingStr ⦃...⦄
open PosetStr ⦃...⦄
open IsRingHom
open RingHoms
open IsCommRingHom
open IsLatticeHom
open ZarLat

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,6 @@ open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Order.Poset

open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.Algebra
Expand Down Expand Up @@ -358,7 +357,7 @@ module _ (R' : CommRing ℓ) where
R[1/h][1/fg]AsCommRing = InvertingElementsBase.R[1/_]AsCommRing
R[1/ h ]AsCommRing ((f /1) · (g /1))

open IsRingHom
open IsCommRingHom
/1/1AsCommRingHomFG : CommRingHom R' R[1/h][1/fg]AsCommRing
fst /1/1AsCommRingHomFG r = [ [ r , 1r , ∣ 0 , refl ∣₁ ] , 1r , ∣ 0 , refl ∣₁ ]
pres0 (snd /1/1AsCommRingHomFG) = refl
Expand All @@ -375,20 +374,20 @@ module _ (R' : CommRing ℓ) where
open Cospan
open Pullback
open RingHoms
isRHomR[1/h]→R[1/h][1/f] : theRingPullback .pbPr₂ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom f
isRHomR[1/h]→R[1/h][1/f] = RingHom≡ (funExt (λ x refl))
isRHomR[1/h]→R[1/h][1/f] : theRingPullback .pbPr₂ ∘cr /1AsCommRingHom ≡ /1/1AsCommRingHom f
isRHomR[1/h]→R[1/h][1/f] = CommRingHom≡ (funExt (λ x refl))

isRHomR[1/h]→R[1/h][1/g] : theRingPullback .pbPr₁ ∘r /1AsCommRingHom ≡ /1/1AsCommRingHom g
isRHomR[1/h]→R[1/h][1/g] = RingHom≡ (funExt (λ x refl))
isRHomR[1/h]→R[1/h][1/g] : theRingPullback .pbPr₁ ∘cr /1AsCommRingHom ≡ /1/1AsCommRingHom g
isRHomR[1/h]→R[1/h][1/g] = CommRingHom≡ (funExt (λ x refl))

isRHomR[1/h][1/f]→R[1/h][1/fg] : theRingCospan .s₂ ∘r /1/1AsCommRingHom f ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/f]→R[1/h][1/fg] = RingHom≡ (funExt
isRHomR[1/h][1/f]→R[1/h][1/fg] : theRingCospan .s₂ ∘cr /1/1AsCommRingHom f ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/f]→R[1/h][1/fg] = CommRingHom≡ (funExt
(λ x cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·IdR x)
(Σ≡Prop (λ _ isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·IdR 1r))))
(Σ≡Prop (λ _ isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·IdR 1r)))))

isRHomR[1/h][1/g]→R[1/h][1/fg] : theRingCospan .s₁ ∘r /1/1AsCommRingHom g ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/g]→R[1/h][1/fg] = RingHom≡ (funExt
isRHomR[1/h][1/g]→R[1/h][1/fg] : theRingCospan .s₁ ∘cr /1/1AsCommRingHom g ≡ /1/1AsCommRingHomFG
isRHomR[1/h][1/g]→R[1/h][1/fg] = CommRingHom≡ (funExt
(λ x cong [_] (≡-× (cong [_] (≡-× (cong (x ·_) (transportRefl 1r) ∙ ·IdR x)
(Σ≡Prop (λ _ isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·IdR 1r))))
(Σ≡Prop (λ _ isPropPropTrunc) (cong (1r ·_) (transportRefl 1r) ∙ ·IdR 1r)))))
Expand Down Expand Up @@ -435,7 +434,7 @@ module _ (R' : CommRing ℓ) where
p i = InvertingElementsBase.R[1/_]AsCommRing R[1/ h ]AsCommRing (eqInR[1/h] i)

q : PathP (λ i CommRingHom R' (p i)) /1/1AsCommRingHomFG (/1/1AsCommRingHom (f · g))
q = toPathP (RingHom≡ (funExt (
q = toPathP (CommRingHom≡ (funExt (
λ x cong [_] (≡-× (cong [_] (≡-× (transportRefl _ ∙ transportRefl x)
(Σ≡Prop (λ _ isPropPropTrunc) (transportRefl 1r))))
(Σ≡Prop (λ _ isPropPropTrunc) (transportRefl 1r))))))

0 comments on commit 39ed7e2

Please sign in to comment.