Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ refactor ] Change definition of Data.Nat.Base._≤‴_ #2518

Merged
merged 4 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@ Non-backwards compatible changes
them to name the operation `+`.
* `distribˡ` and `distribʳ` are defined in the record.

* [issue #2504](https://github.com/agda/agda-stdlib/issues/2504) In `Data.Nat.Base` the definition of `_≤‴_` has been modified to make the witness to equality explicit in a new `≤‴-reflexive` constructor; a pattern synonym ≤‴-refl` has been added for backwards compatibility but NB. the change in parametrisation means that this pattern is *not* well-formed if the old implicit arguments `m`,`n` are supplied explicitly.

Minor improvements
------------------

Expand Down
12 changes: 8 additions & 4 deletions src/Data/Nat/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -379,15 +379,19 @@ s<″s⁻¹ (k , eq) = k , cong pred eq

-- _≤‴_: this definition is useful for induction with an upper bound.

data _≤‴_ : ℕ → ℕ → Set where
≤‴-refl : ∀{m} → m ≤‴ m
≤‴-step : ∀{m n} → suc m ≤‴ n → m ≤‴ n

infix 4 _≤‴_ _<‴_ _≥‴_ _>‴_

data _≤‴_ (m n : ℕ) : Set

_<‴_ : Rel ℕ 0ℓ
m <‴ n = suc m ≤‴ n

data _≤‴_ m n where
≤‴-reflexive : m ≡ n → m ≤‴ n
≤‴-step : m <‴ n → m ≤‴ n

pattern ≤‴-refl = ≤‴-reflexive refl

_≥‴_ : Rel ℕ 0ℓ
m ≥‴ n = n ≤‴ m

Expand Down
35 changes: 16 additions & 19 deletions src/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -2196,25 +2196,25 @@ _>″?_ = flip _<″?_
-- Properties of _≤‴_
------------------------------------------------------------------------

≤‴⇒≤″ : ∀{m n} → m ≤‴ n → m ≤″ n
≤‴⇒≤″ {m = m} ≤‴-refl = 0 , +-identityʳ m
≤‴⇒≤″ {m = m} (≤‴-step m≤n) = _ , trans (+-suc m _) (≤″-proof (≤‴⇒≤″ m≤n))
≤‴⇒≤″ : m ≤‴ n → m ≤″ n
≤‴⇒≤″ ≤‴-refl = _ , +-identityʳ _
≤‴⇒≤″ (≤‴-step m≤n) = _ , trans (+-suc _ _) (≤″-proof (≤‴⇒≤″ m≤n))

m≤‴m+k : ∀{m n k} → m + k ≡ n → m ≤‴ n
m≤‴m+k {m} {k = zero} refl = subst (λ z → m ≤‴ z) (sym (+-identityʳ m)) (≤‴-refl {m})
m≤‴m+k {m} {k = suc k} prf = ≤‴-step (m≤‴m+k {k = k} (trans (sym (+-suc m _)) prf))
m≤‴m+k : m + k ≡ n → m ≤‴ n
m≤‴m+k {k = zero} = ≤‴-reflexive ∘ trans (sym (+-identityʳ _))
m≤‴m+k {k = suc _} = ≤‴-step m≤‴m+k trans (sym (+-suc _ _))

≤″⇒≤‴ : ∀{m n} → m ≤″ n → m ≤‴ n
≤″⇒≤‴ m≤n = m≤‴m+k (≤″-proof m≤n)
≤″⇒≤‴ : m ≤″ n → m ≤‴ n
≤″⇒≤‴ = m≤‴m+k ≤″-proof

0≤‴n : 0 ≤‴ n
0≤‴n = m≤‴m+k refl

<ᵇ⇒<‴ : T (m <ᵇ n) → m <‴ n
<ᵇ⇒<‴ leq = ≤″⇒≤‴ (<ᵇ⇒<″ leq)
<ᵇ⇒<‴ = ≤″⇒≤‴ <ᵇ⇒<″

<‴⇒<ᵇ : ∀ {m n} → m <‴ n → T (m <ᵇ n)
<‴⇒<ᵇ leq = <″⇒<ᵇ (≤‴⇒≤″ leq)
<‴⇒<ᵇ : m <‴ n → T (m <ᵇ n)
<‴⇒<ᵇ = <″⇒<ᵇ ≤‴⇒≤″

infix 4 _<‴?_ _≤‴?_ _≥‴?_ _>‴?_

Expand All @@ -2240,14 +2240,11 @@ _>‴?_ = flip _<‴?_
<‴-irrefl : Irreflexive _≡_ _<‴_
<‴-irrefl eq = <-irrefl eq ∘ ≤‴⇒≤

≤‴-irrelevant : Irrelevant {A = ℕ} _≤‴_
≤‴-irrelevant ≤‴-refl = lemma refl
where
lemma : ∀ {m n} → (e : m ≡ n) → (q : m ≤‴ n) → subst (m ≤‴_) e ≤‴-refl ≡ q
lemma {m} e ≤‴-refl = cong (λ e → subst (m ≤‴_) e ≤‴-refl) $ ≡-irrelevant e refl
lemma refl (≤‴-step m<m) with () ← <‴-irrefl refl m<m
≤‴-irrelevant (≤‴-step m<m) ≤‴-refl with () ← <‴-irrefl refl m<m
≤‴-irrelevant (≤‴-step p) (≤‴-step q) = cong ≤‴-step $ ≤‴-irrelevant p q
≤‴-irrelevant : Irrelevant _≤‴_
≤‴-irrelevant (≤‴-reflexive eq₁) (≤‴-reflexive eq₂) = cong ≤‴-reflexive (≡-irrelevant eq₁ eq₂)
≤‴-irrelevant (≤‴-reflexive eq₁) (≤‴-step q) with () ← <‴-irrefl eq₁ q
≤‴-irrelevant (≤‴-step p) (≤‴-reflexive eq₂) with () ← <‴-irrefl eq₂ p
≤‴-irrelevant (≤‴-step p) (≤‴-step q) = cong ≤‴-step (≤‴-irrelevant p q)
jamesmckinna marked this conversation as resolved.
Show resolved Hide resolved

<‴-irrelevant : Irrelevant {A = ℕ} _<‴_
<‴-irrelevant = ≤‴-irrelevant
Expand Down
Loading