-
Notifications
You must be signed in to change notification settings - Fork 68
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #240 from TOTBWF/monadicity
Crude Monadicity Theorem
- Loading branch information
Showing
7 changed files
with
460 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
-- Monadic Adjunctions | ||
-- https://ncatlab.org/nlab/show/monadic+adjunction | ||
module Categories.Adjoint.Monadic where | ||
|
||
open import Level | ||
|
||
open import Categories.Adjoint | ||
open import Categories.Adjoint.Properties | ||
open import Categories.Category | ||
open import Categories.Category.Equivalence | ||
open import Categories.Functor | ||
open import Categories.Monad | ||
|
||
open import Categories.Category.Construction.EilenbergMoore | ||
open import Categories.Category.Construction.Properties.EilenbergMoore | ||
|
||
private | ||
variable | ||
o ℓ e : Level | ||
𝒞 𝒟 : Category o ℓ e | ||
|
||
-- An adjunction is monadic if the adjunction "comes from" the induced monad in some sense. | ||
record IsMonadicAdjunction {L : Functor 𝒞 𝒟} {R : Functor 𝒟 𝒞} (adjoint : L ⊣ R) : Set (levelOfTerm 𝒞 ⊔ levelOfTerm 𝒟) where | ||
private | ||
T : Monad 𝒞 | ||
T = adjoint⇒monad adjoint | ||
|
||
field | ||
Comparison⁻¹ : Functor (EilenbergMoore T) 𝒟 | ||
comparison-equiv : WeakInverse (ComparisonF adjoint) Comparison⁻¹ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
open import Categories.Adjoint | ||
open import Categories.Category | ||
open import Categories.Functor renaming (id to idF) | ||
|
||
-- The crude monadicity theorem. This proof is based off of the version | ||
-- provided in "Sheaves In Geometry and Logic" by Maclane and Moerdijk. | ||
module Categories.Adjoint.Monadic.Crude {o ℓ e o′ ℓ′ e′} {𝒞 : Category o ℓ e} {𝒟 : Category o′ ℓ′ e′} | ||
{L : Functor 𝒞 𝒟} {R : Functor 𝒟 𝒞} (adjoint : L ⊣ R) where | ||
|
||
open import Level | ||
open import Function using (_$_) | ||
open import Data.Product using (Σ-syntax; _,_) | ||
|
||
open import Categories.Adjoint.Properties | ||
open import Categories.Adjoint.Monadic | ||
open import Categories.Adjoint.Monadic.Properties | ||
open import Categories.Category.Equivalence using (StrongEquivalence) | ||
open import Categories.Category.Equivalence.Properties using (pointwise-iso-equivalence) | ||
open import Categories.Functor.Properties | ||
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) | ||
open import Categories.NaturalTransformation | ||
open import Categories.Monad | ||
|
||
open import Categories.Diagram.Coequalizer | ||
open import Categories.Diagram.ReflexivePair | ||
|
||
open import Categories.Adjoint.Construction.EilenbergMoore | ||
open import Categories.Category.Construction.EilenbergMoore | ||
open import Categories.Category.Construction.Properties.EilenbergMoore | ||
|
||
open import Categories.Morphism | ||
open import Categories.Morphism.Notation | ||
open import Categories.Morphism.Properties | ||
import Categories.Morphism.Reasoning as MR | ||
|
||
private | ||
module L = Functor L | ||
module R = Functor R | ||
|
||
module 𝒞 = Category 𝒞 | ||
module 𝒟 = Category 𝒟 | ||
|
||
module adjoint = Adjoint adjoint | ||
|
||
T : Monad 𝒞 | ||
T = adjoint⇒monad adjoint | ||
|
||
𝒞ᵀ : Category _ _ _ | ||
𝒞ᵀ = EilenbergMoore T | ||
|
||
Comparison : Functor 𝒟 𝒞ᵀ | ||
Comparison = ComparisonF adjoint | ||
|
||
module Comparison = Functor Comparison | ||
|
||
open Coequalizer | ||
|
||
-- We could do this with limits, but this is far easier. | ||
PreservesReflexiveCoequalizers : (F : Functor 𝒟 𝒞) → Set _ | ||
PreservesReflexiveCoequalizers F = ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → (coeq : Coequalizer 𝒟 f g) → IsCoequalizer 𝒞 (F.F₁ f) (F.F₁ g) (F.F₁ (arr coeq)) | ||
where | ||
module F = Functor F | ||
|
||
module _ {F : Functor 𝒟 𝒞} (preserves-reflexive-coeq : PreservesReflexiveCoequalizers F) where | ||
open Functor F | ||
|
||
-- Unfortunately, we need to prove that the 'coequalize' arrows are equal as a lemma | ||
preserves-coequalizer-unique : ∀ {A B C} {f g : 𝒟 [ A , B ]} {h : 𝒟 [ B , C ]} {eq : 𝒟 [ 𝒟 [ h ∘ f ] ≈ 𝒟 [ h ∘ g ] ]} | ||
→ (reflexive-pair : ReflexivePair 𝒟 f g) → (coe : Coequalizer 𝒟 f g) | ||
→ 𝒞 [ F₁ (coequalize coe eq) ≈ IsCoequalizer.coequalize (preserves-reflexive-coeq reflexive-pair coe) ([ F ]-resp-square eq) ] | ||
preserves-coequalizer-unique reflexive-pair coe = IsCoequalizer.unique (preserves-reflexive-coeq reflexive-pair coe) (F-resp-≈ (universal coe) ○ homomorphism) | ||
where | ||
open 𝒞.HomReasoning | ||
|
||
|
||
-- If 𝒟 has coequalizers of reflexive pairs, then the comparison functor has a left adjoint. | ||
module _ (has-reflexive-coequalizers : ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → Coequalizer 𝒟 f g) where | ||
|
||
private | ||
reflexive-pair : (M : Module T) → ReflexivePair 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M))) | ||
reflexive-pair M = record | ||
{ s = L.F₁ (adjoint.unit.η (Module.A M)) | ||
; isReflexivePair = record | ||
{ sectionₗ = begin | ||
𝒟 [ L.F₁ (Module.action M) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈˘⟨ L.homomorphism ⟩ | ||
L.F₁ (𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ) ≈⟨ L.F-resp-≈ (Module.identity M) ⟩ | ||
L.F₁ 𝒞.id ≈⟨ L.identity ⟩ | ||
𝒟.id ∎ | ||
; sectionᵣ = begin | ||
𝒟 [ adjoint.counit.η (L.₀ (Module.A M)) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈⟨ adjoint.zig ⟩ | ||
𝒟.id ∎ | ||
} | ||
} | ||
where | ||
open 𝒟.HomReasoning | ||
|
||
-- The key part of the proof. As we have all reflexive coequalizers, we can create the following coequalizer. | ||
-- We can think of this as identifying the action of the algebra lifted to a "free" structure | ||
-- and the counit of the adjunction, as the unit of the adjunction (also lifted to the "free structure") is a section of both. | ||
has-coequalizer : (M : Module T) → Coequalizer 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M))) | ||
has-coequalizer M = has-reflexive-coequalizers (reflexive-pair M) | ||
|
||
module Comparison⁻¹ = Functor (Comparison⁻¹ adjoint has-coequalizer) | ||
module Comparison⁻¹⊣Comparison = Adjoint (Comparison⁻¹⊣Comparison adjoint has-coequalizer) | ||
|
||
-- We have one interesting coequalizer in 𝒞 built out of a T-module's action. | ||
coequalizer-action : (M : Module T) → Coequalizer 𝒞 (R.F₁ (L.F₁ (Module.action M))) (R.F₁ (adjoint.counit.η (L.₀ (Module.A M)))) | ||
coequalizer-action M = record | ||
{ arr = Module.action M | ||
; isCoequalizer = record | ||
{ equality = Module.commute M | ||
; coequalize = λ {X} {h} eq → 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] | ||
; universal = λ {C} {h} {eq} → begin | ||
h ≈⟨ introʳ adjoint.zag ○ 𝒞.sym-assoc ⟩ | ||
𝒞 [ 𝒞 [ h ∘ R.F₁ (adjoint.counit.η (L.₀ (Module.A M))) ] ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ≈⟨ pushˡ (⟺ eq) ⟩ | ||
𝒞 [ h ∘ 𝒞 [ R.F₁ (L.F₁ (Module.action M)) ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ] ≈⟨ pushʳ (adjoint.unit.sym-commute (Module.action M)) ⟩ | ||
𝒞 [ 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∘ Module.action M ] ∎ | ||
; unique = λ {X} {h} {i} {eq} eq′ → begin | ||
i ≈⟨ introʳ (Module.identity M) ⟩ | ||
𝒞 [ i ∘ 𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ] ≈⟨ pullˡ (⟺ eq′) ⟩ | ||
𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∎ | ||
} | ||
} | ||
where | ||
open 𝒞.HomReasoning | ||
open MR 𝒞 | ||
|
||
-- If 'R' preserves reflexive coequalizers, then the unit of the adjunction is a pointwise isomorphism | ||
unit-iso : PreservesReflexiveCoequalizers R → (X : Module T) → Σ[ h ∈ 𝒞ᵀ [ Comparison.F₀ (Comparison⁻¹.F₀ X) , X ] ] (Iso 𝒞ᵀ (Comparison⁻¹⊣Comparison.unit.η X) h) | ||
unit-iso preserves-reflexive-coeq X = | ||
let | ||
coequalizerˣ = has-coequalizer X | ||
coequalizerᴿˣ = ((IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair X) (has-coequalizer X)))) | ||
coequalizer-iso = up-to-iso 𝒞 (coequalizer-action X) coequalizerᴿˣ | ||
module coequalizer-iso = _≅_ coequalizer-iso | ||
open 𝒞 | ||
open 𝒞.HomReasoning | ||
open MR 𝒞 | ||
α = record | ||
{ arr = coequalizer-iso.to | ||
; commute = begin | ||
coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _) ≈⟨ introʳ (R.F-resp-≈ L.identity ○ R.identity) ⟩ | ||
(coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ 𝒞.id) ≈⟨ pushʳ (R.F-resp-≈ (L.F-resp-≈ (⟺ coequalizer-iso.isoʳ)) ○ R.F-resp-≈ L.homomorphism ○ R.homomorphism) ⟩ | ||
((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ) ∘ adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ (refl⟩∘⟨ (R.F-resp-≈ L.homomorphism ○ R.homomorphism)) ⟩∘⟨refl ⟩ | ||
((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ center ([ R ]-resp-square (adjoint.counit.commute _)) ⟩∘⟨refl ⟩ | ||
((coequalizer-iso.to ∘ (R.F₁ (arr coequalizerˣ) ∘ R.F₁ (adjoint.counit.η (L.F₀ _))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to)) ≈⟨ (refl⟩∘⟨ cancelʳ (⟺ R.homomorphism ○ R.F-resp-≈ adjoint.zig ○ R.identity)) ⟩∘⟨refl ⟩ | ||
(coequalizer-iso.to ∘ R.F₁ (arr coequalizerˣ)) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈˘⟨ universal coequalizerᴿˣ ⟩∘⟨refl ⟩ | ||
Module.action X ∘ R.F₁ (L.F₁ coequalizer-iso.to) ∎ | ||
} | ||
in α , record { isoˡ = coequalizer-iso.isoˡ ; isoʳ = coequalizer-iso.isoʳ } | ||
|
||
-- If 'R' preserves reflexive coequalizers and reflects isomorphisms, then the counit of the adjunction is a pointwise isomorphism. | ||
counit-iso : PreservesReflexiveCoequalizers R → Conservative R → (X : 𝒟.Obj) → Σ[ h ∈ 𝒟 [ X , Comparison⁻¹.F₀ (Comparison.F₀ X) ] ] Iso 𝒟 (Comparison⁻¹⊣Comparison.counit.η X) h | ||
counit-iso preserves-reflexive-coeq conservative X = | ||
let coequalizerᴿᴷˣ = IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) (has-coequalizer (Comparison.F₀ X))) | ||
coequalizerᴷˣ = has-coequalizer (Comparison.F₀ X) | ||
coequalizer-iso = up-to-iso 𝒞 coequalizerᴿᴷˣ (coequalizer-action (Comparison.F₀ X)) | ||
module coequalizer-iso = _≅_ coequalizer-iso | ||
open 𝒞.HomReasoning | ||
open 𝒞.Equiv | ||
in conservative (Iso-resp-≈ 𝒞 coequalizer-iso.iso (⟺ (preserves-coequalizer-unique {R} preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) coequalizerᴷˣ)) refl) | ||
|
||
-- Now, for the final result. Both the unit and counit of the adjunction between the comparison functor and it's inverse are isomorphisms, | ||
-- so therefore they form natural isomorphism. Therfore, we have an equivalence of categories. | ||
crude-monadicity : PreservesReflexiveCoequalizers R → Conservative R → StrongEquivalence 𝒞ᵀ 𝒟 | ||
crude-monadicity preserves-reflexlive-coeq conservative = record | ||
{ F = Comparison⁻¹ adjoint has-coequalizer | ||
; G = Comparison | ||
; weak-inverse = pointwise-iso-equivalence (Comparison⁻¹⊣Comparison adjoint has-coequalizer) | ||
(counit-iso preserves-reflexlive-coeq conservative) | ||
(unit-iso preserves-reflexlive-coeq) | ||
} |
Oops, something went wrong.