Skip to content

ecdsa-elixir fails to check signatures, vulnerable to message forging

Critical severity GitHub Reviewed Published May 24, 2022 to the GitHub Advisory Database • Updated Sep 27, 2023

Package

erlang ecdsa-elixir (Erlang)

Affected versions

= 1.0.0

Patched versions

1.0.1

Description

Summary

Stark Bank is a financial technology company that provides services to simplify and automate digital banking, by providing APIs to perform operations such as payments and transfers. In addition, Stark Bank maintains a number of cryptographic libraries to perform cryptographic signing and verification. These popular libraries are meant to be used to integrate with the Stark Bank ecosystem, but are also accessible on popular package manager platforms in order to be used by other projects. The node package manager reports around 16k weekly downloads for the ecdsa-node implementation while the Python implementation boasts over 7.3M downloads in the last 90 days on PyPI. A number of these libraries suffer from a vulnerability in the signature verification functions, allowing attackers to forge signatures for arbitrary messages which successfully verify with any public key.

Impact

An attacker can forge signatures on arbitrary messages that will verify for any public key. This may allow attackers to authenticate as any user within the Stark Bank platform, and bypass signature verification needed to perform operations on the platform, such as send payments and transfer funds. Additionally, the ability for attackers to forge signatures may impact other users and projects using these libraries in different and unforeseen ways.

Details

The (slightly simplified) ECDSA verification of a signature (r, s) on a hashed message z with public key Q and curve order n works as follows:

The (slightly simplified) ECDSA verification of a signature (r, s) on a hashed message z with public key Q and curve order n works as follows:

  • Check that r and s are integers in the [1, n-1] range, return Invalid if not.
  • Compute u1 = zs-1 mod n and u2 = rs-1 mod n.
  • Compute the elliptic curve point (x, y) = u1G + u2Q, return Invalid if (x, y) is the point at infinity.
  • Return Valid if r ≡ x mod n, Invalid otherwise.

The ECDSA signature verification functions in the libraries listed above fail to perform the first check, ensuring that the r and s components of the signatures are in the correct range. Specifically, the libraries are not checking that the components of the signature are non-zero, which is an important check mandated by the standard, see X9.62:2005, Section 7.4.1/a:

  1. If r’ is not an integer in the interval [1, n-1], then reject the signature.
  2. If s’ is not an integer in the interval [1, n-1], then reject the signature.

For example, consider the following excerpt of the verify function from the ecdsa-python implementation.

def verify(cls, message, signature, publicKey, hashfunc=sha256):
    byteMessage = hashfunc(toBytes(message)).digest()
    numberMessage = numberFromByteString(byteMessage)
    curve = publicKey.curve
    r = signature.r
    s = signature.s
    inv = Math.inv(s, curve.N)
    u1 = Math.multiply(curve.G, n=(numberMessage * inv) % curve.N, N=curve.N, A=curve.A, P=curve.P)
    u2 = Math.multiply(publicKey.point, n=(r * inv) % curve.N, N=curve.N, A=curve.A, P=curve.P)
    add = Math.add(u1, u2, A=curve.A, P=curve.P)
    modX = add.x % curve.N
    return r == modX

In that code snippet, the values r and s are extracted from the signature without any range check. An attacker supplying a signature equal to (r, s) = (0, 0) will not see their signature rejected. Proceeding with the verification, this function computes the inverse of the s component. Note that the Math.inv() function returns zero when supplied with a zero input (even though 0 does not admit an inverse). The code then computes the values u1 = inv * numberMessage * G and u2 = inv * r * Q, but since inv is zero, u1 and u2 will both be zero, i.e., the point at infinity, regardless of the value of numberMessage (the message hash, which we called z above) and Q (the public key). Subsequently, the implementation computes the intermediary curve point add by adding up the two previously computed points, which again results in the point at infinity. The final line checks that the r-component of the signature is equal to the x-coordinate of the curve point, essentially checking that 0 == 0 for all any message and any public key. Therefore, a signature (r, s) = (0, 0) is deemed valid by the code for any message, and under any public key.

Recommendation

Users of the different Stark Bank ECDSA libraries should update to the latest versions. Specifically, versions larger or at least equal to the following should be used.

  • ecdsa-python: v2.0.1
  • ecdsa-java: v1.0.1
  • ecdsa-dotnet: v1.3.2
  • ecdsa-elixir v1.0.1
  • ecdsa-node v1.1.3

References

Published by the National Vulnerability Database Nov 9, 2021
Published to the GitHub Advisory Database May 24, 2022
Reviewed Jul 1, 2022
Last updated Sep 27, 2023

Severity

Critical

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
None
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

EPSS score

0.63%
(79th percentile)

Weaknesses

CVE ID

CVE-2021-43568

GHSA ID

GHSA-xx36-6rv4-gj8r

Credits

Dependabot alerts are not supported on some or all of the ecosystems on this advisory.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.