Skip to content

Wade9320/aws-inspector-quickstart

 
 

Repository files navigation

aws-inspector-quickstart

aws-inspector-quickstart

Required Prerequisites:

Forking Repository:

You will need to create a fork of the repository below:

Creating Github Access Token:

  • Create a github access token to use for the parameter GitHubToken in the aws-inspector-pipeline.yaml template file.

Creating EC2 keypair:

  • Create an EC2 keypair in the region you’re planning to launch the pipeline template in
  • The name of the EC2 keypair needs to be used in the parameter KeyPair of the aws-inspector-pipeline.yaml template file.

Repository Parameters:

All parameters are located in the aws-inspector-pipeline.yaml

  • Set the RepositoryOwner parameter to the owner of the github account that the repository has been forked to.
  • Set the RepositoryName parameter to the repository name
  • Set the BranchName parameter to the branch you’re going to run the pipeline against if you aren’t going to use the master branch.

Optional Prerequisites:

  • Inspector scan duration can be set by updating the value for the parameter ScanLength in the aws-inspector-pipeline.yaml.
  • The unit of time is in seconds. The default value is set to 3 minutes.

Acceptance Test:

Steps to run verify_resources.py

  1. Configure a default AWS profile or the AWS environment variables on the machine intended to run the script
  2. Have Python 3 installed on the machine intended to run the script
  3. Install the dependencies listed in the requirements.txt file from the repository
  4. Provide the name of the Inspector Pipeline Cloudformation stack as a command line argument

The test will call the AWS api using boto3 and print the CodePipeline name, Lambda function name, S3 reports bucket name and the ARN of the SNS topic used to notify the user when new scans complete.

Architecture Diagram

architecture diagram

About

aws-inspector-quickstart

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.1%
  • Perl 27.7%
  • Shell 2.2%