Skip to content

WGLab/LongReadSum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LongReadSum: A fast and flexible QC tool for long read sequencing data

image

build tests

LongReadSum supports FASTA, FASTQ, BAM, FAST5, and sequencing_summary.txt file formats for quick generation of QC data in HTML and text format.

README Contents

Installation using Anaconda

First, install Anaconda.

Next, create a new environment. This installation has been tested with Python 3.10, Linux 64-bit.

conda create -n longreadsum python=3.9
conda activate longreadsum

LongReadSum and its dependencies can then be installed using the following command:

conda install -c wglab -c conda-forge -c jannessp -c bioconda longreadsum=1.4.0

Installation using Docker

First, install Docker. Pull the latest image from Docker hub, which contains the latest longreadsum release and its dependencies.

docker pull genomicslab/longreadsum

Running

On Unix/Linux:

docker run -v C:/Users/.../DataDirectory:/mnt/ -it genomicslab/longreadsum bam -i /mnt/input.bam -o /mnt/output

Note that the -v command is required for Docker to find the input file. Use a directory under C:/Users/ to ensure volume files are mounted correctly. In the above example, the local directory C:/Users/.../DataDirectory containing the input file input.bam is mapped to a directory /mnt/ in the Docker container. Thus, the input file and output directory arguments are relative to the /mnt/ directory, but the output files will also be saved locally in C:/Users/.../DataDirectory under the specified subdirectory output.

Building from source

To get the latest updates in longreadsum, you can build from source. First install Anaconda. Then follow the instructions below to install LongReadSum and its dependencies:

# Pull the latest updates
git clone https://github.com/WGLab/LongReadSum
cd LongReadSum

# Create the longreadsum environment, install dependencies, and activate
conda env create -f environment.yml
conda activate longreadsum

# Build the program
make

Running

Activate the conda environment and then run with arguments:

conda activate longreadsum
longreadsum <FILETYPE> [arguments]

General Usage

Specify the filetype followed by parameters:

longreadsum <FILETYPE> -i $INPUT_FILE -o $OUTPUT_DIRECTORY

Common parameters

To see all parameters for a filetype, run:

longreadsum <FILETYPE> --help

This section describes parameters common to all filetypes:

Parameter Description Default
-i, --input A single input filepath
-I, --inputs Multiple comma-separated input filepaths
-P, --pattern Use pattern matching (*) to specify multiple input files. Enclose the pattern in double quotes.
-g, --log Log file path log_output.log
-G, --log-level Logging level (1: DEBUG, 2: INFO, 3: WARNING, 4: ERROR, 5: CRITICAL) 2
-o, --outputfolder Output directory output_longreadsum
-t, --threads The number of threads used 1
-Q, --outprefix Output file prefix QC_

WGS BAM

This section describes how to generate QC reports for BAM files from whole-genome sequencing (WGS) with alignments to a linear reference genome such as GRCh38 (data shown is HG002 sequenced with ONT Kit V14 Promethion R10.4.1 from https://labs.epi2me.io/askenazi-kit14-2022-12/)

image

image

image

image

General usage

longreadsum bam -i $INPUT_FILE -o $OUTPUT_DIRECTORY

BAM with base modifications

This section describes how to generate QC reports for BAM files with MM, ML base modification tags (data shown is HG002 sequenced with ONT MinION R9.4.1 from https://labs.epi2me.io/gm24385-5mc/)

image

Parameters

Parameter Description Default
--mod Run base modification analysis on the BAM file False
--modprob Base modification filtering threshold. Above/below this value, the base is considered modified/unmodified. 0.8
--ref The reference genome FASTA file to use for identifying CpG sites (optional)

General usage

longreadsum bam -i $INPUT_FILE -o $OUTPUT_DIRECTORY --mod --modprob 0.8 --ref $REF_GENOME

RRMS BAM

This section describes describes how to generate QC reports for ONT RRMS BAM files and associated CSVs (data shown is HG002 RRMS using ONT R9.4.1).

Accepted reads:

image

image

Rejected reads:

image

image

Parameters

Parameter Description Default
-c, --csv CSV file containing read IDs to extract from the BAM file*

The CSV file should contain a read_id column with the read IDs in the BAM file, and a decision column with the accepted/rejected status of the read. Accepted reads will have stop_receiving in the decision column, while rejected reads will have unblock:

batch_time,read_number,channel,num_samples,read_id,sequence_length,decision
1675186897.6034577,93,4,4011,f943c811-3f97-4971-8aed-bb9f36ffb8d1,361,unblock
1675186897.7544408,80,68,4025,fab0c19d-8085-454c-bfb7-c375bbe237a1,462,unblock
1675186897.7544408,93,127,4028,5285e0ba-86c0-4b5d-ba27-5783acad6105,438,unblock
1675186897.7544408,103,156,4023,65d8befa-eec0-4496-bf2b-aa1a84e6dc5e,362,stop_receiving
...

General usage

longreadsum rrms -i $INPUT_FILE -o $OUTPUT_DIRECTORY -c $RRMS_CSV

RNA-Seq BAM

This section describes how to generate QC reports for TIN (transcript integrity number) scores from RNA-Seq BAM files (data shown is Adult GTEx v9 long-read RNA-seq data sequenced with ONT cDNA-PCR protocol from https://www.gtexportal.org/home/downloads/adult-gtex/long_read_data).

Outputs

A TSV file with scores for each transcript:

geneID	chrom	tx_start	tx_end	TIN
ENST00000456328.2	chr1	11868	14409	2.69449577083296
ENST00000450305.2	chr1	12009	13670	0.00000000000000
ENST00000488147.2	chr1	14695	24886	94.06518975035769
ENST00000619216.1	chr1	17368	17436	0.00000000000000
ENST00000473358.1	chr1	29553	31097	0.00000000000000
...

An TSV file with TIN score summary statistics:

Bam_file	TIN(mean)	TIN(median)	TIN(stddev)
/mnt/isilon/wang_lab/perdomoj/data/GTEX/GTEX-14BMU-0526-SM-5CA2F_rep.FAK93376.bam	67.06832655372376	74.24996965188242	26.03788585287367

A summary table in the HTML report:

image

Parameters

Parameter Description Default
--genebed Gene BED12 file required for calculating TIN scores
--sample-size Sample size for TIN calculation 100
--min-coverage Minimum coverage for TIN calculation 10

General usage

longreadsum bam -i $INPUT_FILE -o $OUTPUT_DIRECTORY --genebed $BED_FILE --min-coverage <COVERAGE> --sample-size <SIZE>

Download an example HTML report here (data is Adult GTEx v9 long-read RNA-seq data sequenced with ONT cDNA-PCR protocol from https://www.gtexportal.org/home/downloads/adult-gtex/long_read_data)

PacBio unaligned BAM

This section describes how to generate QC reports for PacBio BAM files without alignments (data shown is HG002 sequenced with PacBio Revio HiFi long reads obtained from https://www.pacb.com/connect/datasets/#WGS-datasets).

image

image

image

image

General usage

longreadsum bam -i $INPUT_FILE -o $OUTPUT_DIRECTORY

ONT POD5

This section describes how to generate QC reports for ONT POD5 (signal) files and their corresponding basecalled BAM files (data shown is HG002 using ONT R10.4.1 and LSK114 downloaded from the tutorial https://github.com/epi2me-labs/wf-basecalling).

Note

This requires generating basecalled BAM files with the move table output. For example, for dorado, the parameter is --emit-moves

image

Parameters

Note

The interactive signal-base correspondence plots in the HTML report use a lot of memory (RAM) which can make your web browser slow. Thus by default, we randomly sample only a few reads, and the user can specify a list of read IDs as well (e.g. from a specific region of interest).

Parameter Description Default
-b, --basecalls The basecalled BAM file to use for signal extraction
-r, --read_ids A comma-separated list of read IDs to extract from the file
-R, --read-count Set the number of reads to randomly sample from the file 3

General usage

# Individual file:
longreadsum pod5 -i $INPUT_FILE -o $OUTPUT_DIRECTORY --basecalls $INPUT_BAM [--read-count <COUNT> | --read-ids <IDS>]

# Directory:
longreadsum pod5 -P "$INPUT_DIRECTORY/*.fast5" -o $OUTPUT_DIRECTORY --basecalls $INPUT_BAM [--read-count <COUNT> | --read-ids <IDS>]

ONT FAST5

Signal QC

This section describes how to generate QC reports for generating a signal and basecalling QC report from ONT FAST5 files with signal and basecall information (data shown is HG002 sequenced with ONT MinION R9.4.1 from https://labs.epi2me.io/gm24385-5mc/)

image

Parameters

Note

The interactive signal-base correspondence plots in the HTML report use a lot of memory (RAM) which can make your web browser slow. Thus by default, we randomly sample only a few reads, and the user can specify a list of read IDs as well (e.g. from a specific region of interest).

Parameter Description Default
-r, --read_ids A comma-separated list of read IDs to extract from the file
-R, --read-count Set the number of reads to randomly sample from the file 3

General usage

# Individual file:
longreadsum f5s -i $INPUT_FILE -o $OUTPUT_DIRECTORY [--read-count <COUNT> | --read-ids <IDS>]

# Directory:
longreadsum f5s -P "$INPUT_DIRECTORY/*.fast5" -o $OUTPUT_DIRECTORY [--read-count <COUNT> | --read-ids <IDS>]

Sequence QC

This section describes how to generate QC reports for sequence data from ONT FAST5 files (data shown is HG002 sequenced with ONT MinION R9.4.1 from https://labs.epi2me.io/gm24385-5mc/)

image

image

image

image

image

General usage

longreadsum f5 -i $INPUT_FILE -o $OUTPUT_DIRECTORY

Basecall summary

This section describes how to generate QC reports for ONT basecall summary (sequencing_summary.txt) files (data shown is HG002 sequenced with ONT PromethION R10.4 from https://labs.epi2me.io/gm24385_q20_2021.10/, filename gm24385_q20_2021.10/analysis/20210805_1713_5C_PAH79257_0e41e938/guppy_5.0.15_sup/sequencing_summary.txt)

image

image

image

General usage

longreadsum seqtxt -i $INPUT_FILE -o $OUTPUT_DIRECTORY

FASTQ

This section describes how to generate QC reports for FASTQ files (data shown is HG002 ONT 2D from GIAB FTP index)

image

image

image

image

image

General usage

longreadsum fq -i $INPUT_FILE -o $OUTPUT_DIRECTORY

FASTA

This section describes how to generate QC reports for FASTA files (data shown is HG002 ONT 2D from GIAB FTP index).

image

image

image

General usage

longreadsum fa -i $INPUT_FILE -o $OUTPUT_DIRECTORY

Revision history

For release history, please visit here.

Getting help

Please refer to the LongReadSum issue pages for posting your issues. We will also respond your questions quickly. Your comments are criticl to improve our tool and will benefit other users.

Citing LongReadSum

Please cite the preprint below if you use our tool:

Perdomo, J. E., Ahsan, M. U., Liu, Q., Fang, L. & Wang, K. LongReadSum: A fast and flexible quality control and signal summarization tool for long-read sequencing data. bioRxiv, 2024.2008.2005.606643, doi:10.1101/2024.08.05.606643 (2024).