Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update dropedge gcn with normalization function #123

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions cogdl/models/nn/dropedge_gcnv2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
import numpy as np
import torch
import torch.nn.functional as F
from .. import BaseModel, register_model
from .gcn import GraphConvolution
from cogdl.utils import add_remaining_self_loops, spmm, add_self_loops


def drop_edge(adj, adj_values, rate):
num_edge = adj.shape[1]
index_edge = np.arange(num_edge)
np.random.shuffle(index_edge)
select_edge = np.sort(index_edge[:int((1 - rate) * num_edge)])
new_adj = adj[:, select_edge]
new_adj_values = adj_values[select_edge]
return new_adj, new_adj_values


def bingge_norm_adj(adj, adj_values, num_nodes):
adj, adj_values = add_self_loops(adj, adj_values, 1, num_nodes)
deg = spmm(adj, adj_values, torch.ones(num_nodes, 1).to(adj.device)).squeeze()
deg_sqrt = deg.pow(-1 / 2)
adj_values = deg_sqrt[adj[1]] * adj_values * deg_sqrt[adj[0]]
row, col = adj[0], adj[1]
mask = row != col
adj_values[row[mask]] += 1
return adj, adj_values


def aug_norm_adj(adj, adj_values, num_nodes):
adj, adj_values = add_remaining_self_loops(adj, adj_values, 1, num_nodes)
deg = spmm(adj, adj_values, torch.ones(num_nodes, 1).to(adj.device)).squeeze()
deg_sqrt = deg.pow(-1 / 2)
adj_values = deg_sqrt[adj[1]] * adj_values * deg_sqrt[adj[0]]
return adj, adj_values


def get_normalizer(normalization):
normalizer_dict = dict(AugNorm=aug_norm_adj,
BinggeNorm=bingge_norm_adj)
if not normalization in normalizer_dict:
raise NotImplementedError
return normalizer_dict[normalization]


@register_model("dropedge_gcn")
class dropedge_gcn(BaseModel):
r"""The DropEdge GCN model from the `"DROPEDGE: TOWARDS DEEP GRAPH CONVOLUTIONAL NETWORKS ON NODE CLASSIFICATION"
<https://arxiv.org/abs/1907.10903>`_ paper

Args:
num_features (int) : Number of input features.
num_classes (int) : Number of classes.
hidden_size (int) : The dimension of node representation.
dropout (float) : Dropout rate for model training.
"""

@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument("--num-features", type=int)
parser.add_argument("--num-classes", type=int)
parser.add_argument("--hidden-size", type=int, default=64)
parser.add_argument("--dropout", type=float, default=0.5)
#DropEdge
parser.add_argument("--dropedge", type=float, default=0.0)
parser.add_argument("--normalization", type=str, default="AugNorm")
# fmt: on

@classmethod
def build_model_from_args(cls, args):
return cls(args.num_features, args.hidden_size, args.num_classes, args.dropout,args.dropedge,
args.normalization)

def __init__(self, nfeat, nhid, nclass, dropout,dropedge,normalization):
super(dropedge_gcn, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
self.dropedge = dropedge
self.normalization = normalization
# self.nonlinear = nn.SELU()

def forward(self, x, adj):
device = x.device
adj_values = torch.ones(adj.shape[1]).to(device)
adj, adj_values = drop_edge(adj,adj_values,self.dropedge)
adj, adj_values = add_remaining_self_loops(adj, adj_values, 1, x.shape[0])
adj, adj_values = get_normalizer(self.normalization)(adj, adj_values, x.shape[0])
deg = spmm(adj, adj_values, torch.ones(x.shape[0], 1).to(device)).squeeze()
deg_sqrt = deg.pow(-1 / 2)
adj_values = deg_sqrt[adj[1]] * adj_values * deg_sqrt[adj[0]]

x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc1(x, adj, adj_values))
# h1 = x
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj, adj_values)

# x = F.relu(x)
# x = torch.sigmoid(x)
# return x
# h2 = x
return F.log_softmax(x, dim=-1)

def loss(self, data):
return F.nll_loss(
self.forward(data.x, data.edge_index)[data.train_mask],
data.y[data.train_mask],
)

def predict(self, data):
return self.forward(data.x, data.edge_index)
2 changes: 1 addition & 1 deletion match.yml
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
node_classification:
- model:
- dropedge_gcn
- gdc_gcn
- gcn
- gat
Expand All @@ -24,7 +25,6 @@ node_classification:
- ppnp
- sgcpn
- sgc
- dropedge_gcn
- unet
- pprgo
dataset:
Expand Down
Loading