Skip to content

This project demonstrates the process of training a neural network to fit various mathematical functions

Notifications You must be signed in to change notification settings

Skwarson96/neural-viz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

neural-viz

This project demonstrates the process of training a neural network to fit various mathematical functions, including sine, rectangle, sawtooth, and polynomial functions. The project allows for the visualization of the learning process through animated plots.

Function Visualizations

@quantech_ai is my second nickname 😜

Sinusoidal Function

Rectangle Function

Sawtooth Function

Polynomial Function

Description

This project uses a simple neural network implemented in PyTorch to fit different types of functions. The functions include sinusoidal, rectangle, sawtooth, and polynomial functions. The neural network's learning process is visualized using animated plots created with Matplotlib.

Getting Started

Prerequisites

You can install the required packages using pip:

pip install -r requirements.txt

Usage

Run the script with the desired parameters to generate and visualize the function fitting process. Below is the basic usage with all available arguments explained.

python main.py --start <START> --stop <STOP> --resolution <RESOLUTION> --amplitude <AMPLITUDE> --function <FUNCTION> --epochs <EPOCHS> --interval <INTERVAL> --noise_level <NOISE_LEVEL> --save

Arguments

  • --start: X axis start value.
  • --stop: X axis end value.
  • --resolution: Resolution of the generated data.
  • --amplitude: Amplitude of the sinusoidal function.
  • --function: Type of function to learn. Options: sin, rectangle, sawtooth, polynomial. Default: sin.
  • --epochs: Number of training epochs.
  • --interval: Interval for plotting results.
  • --noise_level: Noise level added to the data.
  • --save: Save gif file

About

This project demonstrates the process of training a neural network to fit various mathematical functions

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages