Skip to content

SeisSol/Matrices

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

badge

SeisSol Matrices

Basis functions

We use the basis functions based on Jacobi polynomials as explained in appendix A of J. de la Puente, ‘Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes’, PhD-Thesis, Ludwig-Maximilians-Universität München, Munich, 2008.

On triangles, we denote the polynomials as $\Phi_{k(p,q)}$, where $k$ is a multiindex, based on $p$ and $q$. If we use basis functions for order $\mathcal{O}$, we have $\frac{1}{2} \times \mathcal{O} \times (\mathcal{O} + 1)$ basis functions.

On tetrahedrons, we denote the polynomials as $\Psi_{k(p,q,r)}$, where $l$ is a multiindex, based on $p$, $q$ and $r$. If we use basis functions for order $\mathcal{O}$, we have $\frac{1}{6} \times \mathcal{O} \times (\mathcal{O} + 1) \times (\mathcal{O} + 2)$ basis functions.

Matrices

Discountinuos Galerkin matrices

Notation Formula SeisSol
$M_{kl}$ $\int_T \Psi_k \Psi_l dx$ M3
$\int_T \Phi_k \Phi_l dx$ M2
$F_{kl}^{-,j}$ $\int_T \Psi_k \Psi_l dx$ rT

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages