Skip to content

RobinsonGarcia/PanorAi

Repository files navigation

Panorai

Panorai is a Python package for spherical (360°) image processing, specifically focusing on sampling, projection, forward/backward transformations, and unsharp masking for panoramic or spherical data. It provides a modular pipeline to handle various steps, including:

  • Resizing input images
  • Sampling tangent points on a sphere (e.g., cube-based, Fibonacci-based)
  • Projecting spherical images into local tangential (rectilinear) planes
  • Re-projecting these rectilinear images back into the equirectangular space
  • Configuring and applying unsharp masking to sharpen the projected images
  • Logging and comparing configuration results (e.g., MSE) via an automated test suite

This README will guide you through the repository structure, installation, usage, and testing of Panorai.


Table of Contents

  1. Overview
  2. Directory Structure
  3. Installation
  4. Examples
  5. Key Modules and Classes
  6. Running Tests
  7. Extending Panorai
  8. License

Overview

Panorai is a Python library designed for advanced geometric transformations, projections, and sampling on spherical and equirectangular data. It provides a highly modular framework for implementing gnomonic projections, backward projections, and blending strategies, suitable for 360-degree image processing and panoramic data transformations.


Directory Structure

/
├── panorai/
│   ├── __pycache__/
│   ├── common/
│   │   ├── __pycache__/
│   │   ├── __init__.py
│   │   └── shared_config.py
│   ├── pipeline/
│   │   ├── __pycache__/
│   │   ├── utils/
│   │   │   ├── __pycache__/
│   │   │   ├── __init__.py
│   │   │   └── resizer.py
│   │   ├── __init__.py
│   │   ├── pipeline.py
│   │   ├── pipeline_data.py
│   │   └── pipeline_old.py
│   ├── projection/
│   │   ├── __pycache__/
│   │   ├── utils/
│   │   │   ├── __pycache__/
│   │   │   ├── __init__.py
│   │   │   ├── remapper.py
│   │   │   └── unsharp.py
│   │   ├── __init__.py
│   │   ├── projector.py
│   │   └── projector_deprecated.py
│   ├── readme/
│   │   └── gnomonic.md
│   ├── sampler/
│   │   ├── __pycache__/
│   │   ├── __init__.py
│   │   └── sampler.py
│   ├── __init__.py
├── panorai.egg-info/
│   ├── dependency_links.txt
│   ├── PKG-INFO
│   ├── SOURCES.txt
│   └── top_level.txt
├── tests/
│   ├── __pycache__/
│   └── test_config_params.py
├── .gitignore
├── best_configs_chart.png
├── requirements.txt
├── setup.py
└── test_results.db

Notable Contents

  • panorai/
    Main package directory containing submodules:

    • pipeline/: The pipeline logic for forward/backward projection and data handling, plus utility functions like resizer.
    • projection/: Projector classes (e.g., GnomonicProjector) and remapping/unsharp utility code.
    • sampler/: Sphere sampling strategies (cube, icosahedron, Fibonacci).
    • readme/: Additional notes/documentation (e.g., gnomonic.md).
  • setup.py
    A setuptools-based installation script.

  • requirements.txt
    Lists dependencies needed to run the code (e.g., NumPy, OpenCV, etc.).


Installation

  1. Clone the Repository:

    git clone https://github.com/yourusername/panorai.git
    cd panorai
  2. Install Dependencies:

    pip install -r requirements.txt
  3. Install Panorai (Editable Mode or Standard):

    pip install -e .
    # or
    python setup.py install

Examples

1. Data Preparation

Start by loading your input data, typically stored in an .npz file containing rgb, depth, and other channels.

import numpy as np
from panorai.pipeline.pipeline_data import PipelineData

# Load data from an NPZ file
filename = 'path/to/sample.npz'  # Replace with your file path
arr = np.load(filename)

rgb = arr['rgb']  # Shape: (H, W, 3)
depth = np.sqrt(np.sum(arr['z']**2, axis=-1))[:, :, None]  # Shape: (H, W, 1)
xyz = arr['z']  # Shape: (H, W, 3)

# Create a PipelineData instance
data = PipelineData.from_dict({
    "rgb": rgb,
    "depth": depth,
    "xyz_depth": xyz
})

2. Preprocessing Data

Adjust for shadow angle and optionally rotate the equirectangular image:

from panorai.pipeline.utils.preprocess_eq import PreprocessEquirectangularImage

# Visualize the original data
import matplotlib.pyplot as plt
plt.imshow(data.data['rgb'])
plt.show()

# Preprocess the data (e.g., handle shadow angle)
data.preprocess(shadow_angle=30)
plt.imshow(data.data['rgb'])
plt.show()

3. Using Projections

3.1. Forward Projection

Project equirectangular data into a gnomonic projection.

from panorai.submodules.projections import ProjectionRegistry

# Access the gnomonic projection
proj = ProjectionRegistry.get_projection('gnomonic', return_processor=True)

# Perform forward projection
face = proj.forward(data.data['rgb'])
plt.imshow(face)
plt.show()

3.2. Backward Projection

Reconstruct the equirectangular image from a projection:

# Perform backward projection
eq_img = proj.backward(face)
plt.imshow(eq_img)
plt.show()

4. Using the ProjectionPipeline

The ProjectionPipeline provides a high-level API for projections.

from panorai.pipeline.pipeline import ProjectionPipeline

# Initialize the pipeline
pipe = ProjectionPipeline(projection_name='gnomonic')

# Forward projection
face = pipe.project(data)
plt.imshow(face['rgb'].astype(np.uint8))
plt.show()

4.1. Using Samplers

Use samplers to generate multiple projections (e.g., cube or icosahedron samplers):

pipe = ProjectionPipeline(projection_name='gnomonic', sampler_name='CubeSampler')
faces = pipe.project(data)

# Visualize a specific face
plt.imshow(faces['point_1']['rgb'].astype(np.uint8))
plt.show()

4.2. Blending Projections

Blend multiple projections into a seamless equirectangular image:

# Reconstruct equirectangular image
reconstructed = pipe.backward(faces)
plt.imshow(reconstructed['stacked'])
plt.show()

4.3. Custom Configurations

Modify the pipeline configuration to customize the behavior:

pipe = ProjectionPipeline(projection_name='gnomonic', sampler_name='IcosahedronSampler')
faces = pipe.project(data, subdivisions=2, fov_deg=40)
reconstructed = pipe.backward(faces)
plt.imshow(reconstructed['stacked'])
plt.show()

Key Modules and Classes

  1. PipelineData
    A container for storing and stacking multiple image channels (e.g., rgb, depth).

  2. ProjectionPipeline
    Manages the forward/backward transformations using a chosen sampler and projector.

  3. Samplers

    • CubeSampler: Tangent points for cube-based projections.
    • IcosahedronSampler: Icosahedron-based tangent points.
    • FibonacciSampler: Fibonacci sphere sampling for uniform distribution.
  4. ProjectionRegistry


Extending Panorai

  • Add new samplers: Implement a new class inheriting from Sampler and register it in SAMPLER_CLASSES.
  • Add new projectors: Implement a new class inheriting from ProjectionStrategy and add it to PROJECTOR_CLASSES.
  • HF integration to handle depth estimation: Implement seamless integration with HF to load and run DA inference

License

This project is licensed under the MIT License. See the LICENSE file for details.


Contact

For questions or feedback, contact the maintainers:


Enjoy using Panorai for your panoramic image processing!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages