-
Notifications
You must be signed in to change notification settings - Fork 14
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adding new generation of table manipulation tools #610
base: master
Are you sure you want to change the base?
Changes from all commits
b05daf1
a7a24d5
54f1557
56c59c3
9d57959
0cc8299
60ea3a6
0db7a67
6af5d3f
a968cca
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,5 @@ | ||
.vscode | ||
**/tool_test_output.html | ||
**/tool_test_output.json | ||
**/tmp* | ||
**/__pycache__ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
name: tables | ||
owner: recetox | ||
remote_repository_url: "https://github.com/RECETOX/galaxytools/tree/master/tools/analysis" | ||
homepage_url: "https://github.com/RECETOX/galaxytools" | ||
categories: | ||
- Metabolomics | ||
- Statistics | ||
description: "Tools to manipulate and analyze data tables." | ||
long_description: "Tools to manipulate and analyze data tables. Current tools include interpolation using scipy and arithmetic operations on tables with pandas." | ||
auto_tool_repositories: | ||
name_template: "{{ tool_id }}" | ||
description_template: "{{ tool_name }} tool from the general purpose data analysis suite developed by RECETOX." | ||
suite: | ||
name: suite_table_tools | ||
description: This tool suites contains tools for general purpose data analysis built on top of pandas, scipy, dplyr and others. | ||
type: repository_suite_definition |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import argparse | ||
|
||
from utils import LoadDataAction, StoreOutputAction | ||
|
||
def perform_operation(df, column_index, operation, operand): | ||
column_name = df.columns[column_index - 1] # Convert base-1 index to zero-based index | ||
if operation == 'mul': | ||
df[column_name] = df[column_name] * operand | ||
elif operation == 'sub': | ||
df[column_name] = df[column_name] - operand | ||
elif operation == 'div': | ||
df[column_name] = df[column_name] / operand | ||
elif operation == 'add': | ||
df[column_name] = df[column_name] + operand | ||
elif operation == 'pow': | ||
df[column_name] = df[column_name] ** operand | ||
else: | ||
raise ValueError(f"Unsupported operation: {operation}") | ||
return df | ||
|
||
def main(input_dataset, column_index, operation, operand, output_dataset): | ||
df = input_dataset | ||
df = perform_operation(df, column_index, operation, operand) | ||
write_func, file_path = output_dataset | ||
write_func(df, file_path) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description='Perform arithmetic operations on a dataframe column.') | ||
parser.add_argument('--input_dataset', nargs=2, action=LoadDataAction, required=True, help='Path to the input dataset and its file extension (csv, tsv, parquet)') | ||
parser.add_argument('--column', type=int, required=True, help='Base-1 index of the column to perform the operation on') | ||
parser.add_argument('--operation', type=str, choices=['mul', 'sub', 'div', 'add', 'pow'], required=True, help='Arithmetic operation to perform') | ||
parser.add_argument('--operand', type=float, required=True, help='Operand for the arithmetic operation') | ||
parser.add_argument('--output_dataset', nargs=2, action=StoreOutputAction, required=True, help='Path to the output dataset and its file extension (csv, tsv, parquet)') | ||
|
||
args = parser.parse_args() | ||
main(args.input_dataset, args.column, args.operation, args.operand, args.output_dataset) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
<tool id="pandas_arithmetics" name="pandas arithmetics" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.01" license="MIT"> | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For this tool I would think that an extension for table compute is more appropriate. The possibility to select specific columns / rows for arithmetic operations would definitely make sense. |
||
<description>perform arithmetic operations on a dataframe column</description> | ||
<macros> | ||
<token name="@TOOL_VERSION@">2.2.3</token> | ||
<token name="@VERSION_SUFFIX@">0</token> | ||
</macros> | ||
<requirements> | ||
<requirement type="package" version="@TOOL_VERSION@">pandas</requirement> | ||
<requirement type="package" version="18.0.0">pyarrow</requirement> | ||
</requirements> | ||
<command detect_errors="exit_code"><![CDATA[ | ||
python3 '$__tool_directory__/table_pandas_arithmetics.py' | ||
--input_dataset '$input_dataset' '$input_dataset.ext' | ||
--column '$column' | ||
--operation '$operation' | ||
--operand '$operand' | ||
--output_dataset '$output_dataset' '$output_dataset.ext' | ||
]]></command> | ||
<inputs> | ||
<param name="input_dataset" type="data" format="csv,tsv,tabular,parquet" label="Input Dataset"/> | ||
<param name="column" type="data_column" data_ref="input_dataset" use_header_names="true" label="Column" help="Column from the dataset to perform the computation on."/> | ||
<param name="operation" type="select" label="Arithmetic Operation"> | ||
<option value="mul">Multiply</option> | ||
<option value="sub">Subtract</option> | ||
<option value="div">Divide</option> | ||
<option value="add">Add</option> | ||
<option value="pow">Power</option> | ||
</param> | ||
<param name="operand" type="float" label="Operand"/> | ||
</inputs> | ||
<outputs> | ||
<data name="output_dataset" format_source="input_dataset" label="${tool.name} on ${on_string}"> | ||
<change_format> | ||
<when input="input_dataset.ext" value="tsv" format="tabular" /> | ||
</change_format> | ||
</data> | ||
</outputs> | ||
<tests> | ||
<test> | ||
<param name="input_dataset" value="query.tabular" ftype="tabular"/> | ||
<param name="column" value="3"/> | ||
<param name="operation" value="div"/> | ||
<param name="operand" value="100"/> | ||
<output name="output_dataset" file="arithmetics/query_divide_ri.tabular" ftype="tabular"/> | ||
</test> | ||
</tests> | ||
<help> | ||
This tool performs arithmetic operations on a specified column of a dataframe. | ||
Supported operations are: multiply, subtract, divide, add, and power. | ||
</help> | ||
<citations> | ||
<citation type="doi">10.5281/zenodo.3509134</citation> | ||
<citation type="doi">10.25080/Majora-92bf1922-00a</citation> | ||
</citations> | ||
</tool> |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
import argparse | ||
import pandas as pd | ||
from utils import LoadDataAction, StoreOutputAction | ||
|
||
class KeyValuePairsAction(argparse.Action): | ||
def __call__(self, parser, namespace, values, option_string=None): | ||
key_value_pairs = {} | ||
for item in values: | ||
key, value = item.split('=') | ||
key_value_pairs[int(key)] = value # Convert key to integer | ||
setattr(namespace, self.dest, key_value_pairs) | ||
|
||
def rename_columns(df, rename_dict): | ||
rename_map = {df.columns[key - 1]: value for key, value in rename_dict.items()} # Convert 1-based index to column name | ||
return df.rename(columns=rename_map) | ||
|
||
def main(input_dataset, rename_dict, output_dataset): | ||
df = input_dataset | ||
df = rename_columns(df, rename_dict) | ||
write_func, file_path = output_dataset | ||
write_func(df, file_path) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description='Rename columns in a dataframe.') | ||
parser.add_argument('--input_dataset', nargs=2, action=LoadDataAction, required=True, help='Path to the input dataset and its file extension (csv, tsv, parquet)') | ||
parser.add_argument('--rename', nargs='+', action=KeyValuePairsAction, required=True, help='List of key=value pairs with 1-based column index as key and new column name as value') | ||
parser.add_argument('--output_dataset', nargs=2, action=StoreOutputAction, required=True, help='Path to the output dataset and its file extension (csv, tsv, parquet)') | ||
|
||
args = parser.parse_args() | ||
main(args.input_dataset, args.rename, args.output_dataset) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
<tool id="table_pandas_rename_column" name="rename column" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.01" license="MIT"> | ||
<description>of a table</description> | ||
<!-- <xrefs> | ||
<xref type="bio.tools"></xref> | ||
</xrefs> --> | ||
<macros> | ||
<token name="@TOOL_VERSION@">2.2.3</token> | ||
<token name="@VERSION_SUFFIX@">0</token> | ||
</macros> | ||
<!-- TODO: please annotate this tool with topics and operations from http://edamontology.org --> | ||
<!-- TODO: for more information see: https://galaxy-iuc-standards.readthedocs.io/en/latest/best_practices/tool_xml.html#edam-topics-and-operations --> | ||
<!-- <edam_topics> | ||
<edam_topic>topic_TODO</edam_topic> | ||
</edam_topics> | ||
<edam_operations> | ||
<edam_operation>operation_TODO</edam_operation> | ||
</edam_operations> --> | ||
<requirements> | ||
<requirement type="package" version="@TOOL_VERSION@">pandas</requirement> | ||
</requirements> | ||
<command detect_errors="exit_code"><![CDATA[ | ||
#set rename_dict = " ".join([str($key_value_pair.column) + '=' + str($key_value_pair.new_name) for $key_value_pair in $columns_selection]) | ||
python3 '$__tool_directory__/table_pandas_rename_column.py' | ||
--input_dataset '$input_dataset' '$input_dataset.ext' | ||
--rename $rename_dict | ||
--output_dataset '$output_dataset' '$output_dataset.ext' | ||
]]></command> | ||
<inputs> | ||
<param name="input_dataset" type="data" format="csv,tsv,tabular,parquet" label="Input Dataset"/> | ||
<repeat name="columns_selection" title="Rename column" min="1"> | ||
<param name="column" type="data_column" data_ref="input_dataset" use_header_names="true" label="Column" help="Column from the dataset to rename."/> | ||
<param argument="new_name" type="text" value="" label="New column name" help="New name for the column"> | ||
<sanitizer invalid_char=""> | ||
<valid initial="string.letters,string.digits"> | ||
<add value="_" /> | ||
</valid> | ||
</sanitizer> | ||
<validator type="regex">[0-9a-zA-Z_]+</validator> | ||
</param> | ||
</repeat> | ||
</inputs> | ||
<outputs> | ||
<data name="output_dataset" format_source="input_dataset" label="${tool.name} on ${on_string}"> | ||
<change_format> | ||
<when input="input_dataset.ext" value="tsv" format="tabular" /> | ||
</change_format> | ||
</data> | ||
</outputs> | ||
<tests> | ||
<test> | ||
<param name="input_dataset" value="reference.txt" ftype="tabular"/> | ||
<param name="column" value="2"/> | ||
<param name="new_name" value="retention_time"/> | ||
<output name="output_dataset" file="rename/reference_rt_renamed.tabular" ftype="tabular"/> | ||
</test> | ||
<test> | ||
<param name="input_dataset" value="reference.txt" ftype="tabular"/> | ||
<repeat name="columns_selection"> | ||
<param name="column" value="2"/> | ||
<param name="new_name" value="retention_time"/> | ||
</repeat> | ||
<repeat name="columns_selection"> | ||
<param name="column" value="1"/> | ||
<param name="new_name" value="retention_index"/> | ||
</repeat> | ||
<output name="output_dataset" file="rename/reference_both_renamed.tabular" ftype="tabular"/> | ||
</test> | ||
</tests> | ||
<help><![CDATA[ | ||
blub | ||
]]></help> | ||
<citations> | ||
<citation type="doi">10.5281/zenodo.3509134</citation> | ||
</citations> | ||
</tool> |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
import argparse | ||
import numpy as np | ||
from scipy.interpolate import CubicSpline, PchipInterpolator, Akima1DInterpolator | ||
|
||
from utils import LoadDataAction, StoreOutputAction | ||
|
||
class InterpolationModelAction(argparse.Action): | ||
def __call__(self, parser, namespace, values, option_string=None): | ||
interpolators = { | ||
"linear": np.interp, | ||
"cubic": CubicSpline, | ||
"pchip": PchipInterpolator, | ||
"akima": Akima1DInterpolator | ||
} | ||
if values not in interpolators: | ||
raise ValueError(f"Unknown interpolation method: {values}") | ||
setattr(namespace, self.dest, interpolators[values]) | ||
|
||
|
||
def main(reference, query, x_col, y_col, xnew_col, model, output_dataset): | ||
# Index is passed with base 1 so we need to subtract 1 to get the correct column names | ||
x_col = reference.columns[x_col - 1] | ||
y_col = reference.columns[y_col - 1] | ||
xnew_col = query.columns[xnew_col - 1] | ||
|
||
if model == np.interp: | ||
query[y_col] = model(query[xnew_col], reference[x_col], reference[y_col]) | ||
else: | ||
model_instance = model(reference[x_col], reference[y_col]) | ||
query[y_col] = model_instance(query[xnew_col]).astype(float) | ||
|
||
write_func, file_path = output_dataset | ||
write_func(query, file_path) | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser(description='Interpolate data using various methods.') | ||
parser.add_argument('--reference_dataset', nargs=2, action=LoadDataAction, required=True, help='Path to the reference dataset and its file extension (csv, tsv, parquet)') | ||
parser.add_argument('--query_dataset', nargs=2, action=LoadDataAction, required=True, help='Path to the query dataset and its file extension (csv, tsv, parquet)') | ||
parser.add_argument('--x_col', type=int, required=True, help='Index of the x column in the reference dataset (1-based)') | ||
parser.add_argument('--y_col', type=int, required=True, help='Index of the y column in the reference dataset (1-based)') | ||
parser.add_argument('--xnew_col', type=int, required=True, help='Index of the x column in the query dataset (1-based)') | ||
parser.add_argument('--method', type=str, choices=['linear', 'cubic', 'pchip', 'akima'], action=InterpolationModelAction, required=True, help='Interpolation method') | ||
parser.add_argument('--output_dataset', nargs=2, action=StoreOutputAction, required=True, help='Path to the output dataset and its file extension (csv, tsv, parquet)') | ||
|
||
args = parser.parse_args() | ||
main(args.reference_dataset, args.query_dataset, args.x_col, args.y_col, args.xnew_col, args.method, args.output_dataset) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
<tool id="scipy_interpolate" name="scipy interpolate" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="20.01" license="MIT"> | ||
<description>interpolate data using the scipy.interpolate library</description> | ||
<!-- <xrefs> | ||
<xref type="bio.tools"></xref> | ||
</xrefs> --> | ||
<macros> | ||
<token name="@TOOL_VERSION@">1.14.1</token> | ||
<token name="@VERSION_SUFFIX@">0</token> | ||
</macros> | ||
<!-- TODO: please annotate this tool with topics and operations from http://edamontology.org --> | ||
<!-- TODO: for more information see: https://galaxy-iuc-standards.readthedocs.io/en/latest/best_practices/tool_xml.html#edam-topics-and-operations --> | ||
<!-- <edam_topics> | ||
<edam_topic>topic_TODO</edam_topic> | ||
</edam_topics> | ||
<edam_operations> | ||
<edam_operation>operation_TODO</edam_operation> | ||
</edam_operations> --> | ||
<requirements> | ||
<requirement type="package" version="@TOOL_VERSION@">scipy</requirement> | ||
<requirement type="package" version="2.2.3">pandas</requirement> | ||
<requirement type="package" version="18.0.0">pyarrow</requirement> | ||
</requirements> | ||
<command detect_errors="exit_code"><![CDATA[ | ||
python3 '${__tool_directory__}/table_scipy_interpolate.py' | ||
--reference_dataset '$reference_dataset' '$reference_dataset.ext' | ||
--query_dataset '$query_dataset' '$query_dataset.ext' | ||
--x_col $x_col | ||
--y_col $y_col | ||
--xnew_col $xnew_col | ||
--method '$method' | ||
--output_dataset '$output_dataset' '$output_dataset.ext' | ||
]]></command> | ||
|
||
<inputs> | ||
<param argument="--reference_dataset" type="data" format="tabular,csv,tsv,parquet" label="Reference data" help="Reference dataset to use fopr the interpolation" /> | ||
<param name="x_col" type="data_column" data_ref="reference_dataset" use_header_names="true" label="x (reference)" help="Column from the reference dataset to use as X axis for the interpolator."/> | ||
<param name="y_col" type="data_column" data_ref="reference_dataset" use_header_names="true" label="y (reference)" help="Column from the reference dataset to use as Y axis for the interpolator."/> | ||
<param argument="--query_dataset" type="data" format="tabular,csv,tsv,parquet" label="Query dataset" help="Query dataset for which to interpolate the values." /> | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Are there any constraints regarding the range of the x values of the reference and the query? |
||
<param name="xnew_col" type="data_column" data_ref="query_dataset" use_header_names="true" label="x (query)" help="Column from the query dataset for which to interpolate."/> | ||
|
||
<param name="method" type="select" label="Interpolation method" help="Interpolation method from scipy to use. For more details see [1]."> | ||
<option value="linear">Piecewise linear</option> | ||
<option value="cubic" selected="true">Cubic spline</option> | ||
<option value="pchip">Pchip</option> | ||
<option value="akima">Akima1D</option> | ||
</param> | ||
</inputs> | ||
<outputs> | ||
<data name="output_dataset" format_source="query_dataset" label="${tool.name} on ${on_string}"> | ||
<change_format> | ||
<when input="query_dataset.ext" value="tsv" format="tabular" /> | ||
</change_format> | ||
</data> | ||
</outputs> | ||
<tests> | ||
<test> | ||
<param name="reference_dataset" value="reference.txt" ftype="tabular"/> | ||
<param name="x_col" value="1"/> | ||
<param name="y_col" value="2"/> | ||
<param name="query_dataset" value="query.tabular" ftype="tabular"/> | ||
<param name="xnew_col" value="3"/> | ||
<output name="output_dataset" file="interpolate/query_interpolate_rt.tabular" ftype="tabular"/> | ||
</test> | ||
</tests> | ||
<help><![CDATA[ | ||
.. class:: infomark | ||
|
||
**What it does** | ||
This tool interpolates the values for a column to be added | ||
|
||
Usage | ||
..... | ||
[1] (https://docs.scipy.org/doc/scipy/tutorial/interpolate.html) | ||
|
||
**Input** | ||
Input a reference table and choose the X (source) and Y (target) columns for the interpolation. | ||
Choose a query table and the X (source) column for which to calculate the new Y values. | ||
|
||
|
||
**Output** | ||
A table with the interpolated Y column. | ||
|
||
]]></help> | ||
<citations> | ||
<citation type="doi">10.25080/Majora-92bf1922-00a</citation> | ||
<citation type="doi">10.1038/s41592-019-0686-2</citation> | ||
</citations> | ||
</tool> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The URLs would need fixes