-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet.py
206 lines (171 loc) · 7.58 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Activation, Dense, Flatten, GaussianNoise, Conv2D, MaxPooling2D, AveragePooling2D, Add, ZeroPadding2D, BatchNormalization
from tensorflow.keras.regularizers import l2
from tensorflow.keras.initializers import glorot_uniform
from tensorflow.keras import optimizers, metrics
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras import models
from tensorflow.keras import backend as K
import tensorflow as tf
import six
def bn_relu(input):
"""Helper to build a BN -> relu block
"""
norm = BatchNormalization(axis=3)(input)
return Activation("relu")(norm)
def get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError("Invalid {}".format(identifier))
return res
return identifier
def conv_bn_relu(**conv_params):
"""Helper to build a conv -> BN -> relu block
"""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.0e-4))
def f(input):
conv = Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
)(input)
return bn_relu(conv)
return f
def residual_block(block_function, filters, repetitions, is_first_layer=False):
"""Builds a residual block with repeating bottleneck blocks.
"""
def f(input):
for i in range(repetitions):
init_strides = (1, 1)
if i == 0 and not is_first_layer:
init_strides = (2, 2)
input = block_function(
filters=filters,
init_strides=init_strides,
is_first_block_of_first_layer=(is_first_layer and i == 0),
)(input)
return input
return f
def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
"""Basic 3 X 3 convolution blocks for use on resnets with layers <= 34.
Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf
"""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv2D(
filters=filters,
kernel_size=(3, 3),
strides=init_strides,
padding="same",
kernel_initializer="he_normal",
kernel_regularizer=l2(1e-4),
)(input)
else:
conv1 = bn_relu_conv(
filters=filters, kernel_size=(3, 3), strides=init_strides
)(input)
residual = bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv1)
return shortcut(input, residual)
return f
def shortcut(input, residual):
"""Adds a shortcut between input and residual block and merges them with "sum"
"""
# Expand channels of shortcut to match residual.
# Stride appropriately to match residual (width, height)
# Should be int if network architecture is correctly configured.
input_shape = K.int_shape(input)
residual_shape = K.int_shape(residual)
stride_width = int(round(input_shape[1] / residual_shape[1]))
stride_height = int(round(input_shape[2] / residual_shape[2]))
equal_channels = input_shape[3] == residual_shape[3]
shortcut = input
# 1 X 1 conv if shape is different. Else identity.
if stride_width > 1 or stride_height > 1 or not equal_channels:
shortcut = Conv2D(
filters=residual_shape[3],
kernel_size=(1, 1),
strides=(stride_width, stride_height),
padding="valid",
kernel_initializer="he_normal",
kernel_regularizer=l2(0.0001),
)(input)
return Add()([shortcut, residual])
def bn_relu_conv(**conv_params):
"""Helper to build a BN -> relu -> conv block.
This is an improved scheme proposed in http://arxiv.org/pdf/1603.05027v2.pdf
"""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.0e-4))
def f(input):
activation = bn_relu(input)
return Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
)(activation)
return f
def build_resnet(input_shape, num_outputs, block_fn, repetitions, settings_dict, verbatim=False):
"""Builds a custom ResNet like architecture.
Args:
input_shape: The input shape in the form (nb_channels, nb_rows, nb_cols)
num_outputs: The number of outputs at final softmax layer
block_fn: The block function to use. This is either `basic_block` or `bottleneck`.
The original paper used basic_block for layers < 50
repetitions: Number of repetitions of various block units.
At each block unit, the number of filters are doubled and the input size is halved
Returns:
The keras `Model`.
"""
# _handle_dim_ordering()
# if len(input_shape) != 3:
# raise Exception("Input shape should be a tuple (nb_channels, nb_rows, nb_cols)")
#
## Permute dimension order if necessary
# if K.image_dim_ordering() == 'tf':
# input_shape = (input_shape[1], input_shape[2], input_shape[0])
# Load function from str if needed.
block_fn = get_block(block_fn)
input = Input(shape=input_shape)
# Gauss = GaussianNoise(0.01)(input)
conv1 = conv_bn_relu(filters=64, kernel_size=(7, 7), strides=(2, 2))(input)
pool1 = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same")(conv1)
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = residual_block(
block_fn, filters=filters, repetitions=r, is_first_layer=(i == 0)
)(block)
filters *= 2
# Last activation
block = bn_relu(block)
# Classifier block
block_shape = K.int_shape(block)
pool2 = AveragePooling2D(pool_size=(block_shape[1], block_shape[2]), strides=(1, 1))(block)
flatten1 = Flatten()(pool2)
dense = Dense(units=num_outputs, kernel_initializer="he_normal", activation=settings_dict["last_activation_function"])(flatten1)
model = Model(inputs=input, outputs=dense)
if verbatim:
print(model.summary(), flush=True)
model.compile(
optimizer=optimizers.Adam(lr=settings_dict["learning_rate"]),
loss=settings_dict["loss_funcion"],
metrics=settings_dict["metrics"],
)
return model