-
Notifications
You must be signed in to change notification settings - Fork 61
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Reworked and reorganized lookup table generation and added documentation
- Loading branch information
BuildTools
committed
Jan 7, 2025
1 parent
1de3dab
commit b849eef
Showing
9 changed files
with
1,689 additions
and
619 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
use super::TransferFn; | ||
|
||
/// This struct contains the scale and bias for a linear | ||
/// regression model of a transfer function on a given interval. | ||
/// | ||
/// This model is calculated by using simple linear regression with | ||
/// integration instead of summation. | ||
pub(super) struct LinearModel { | ||
scale: f64, | ||
bias: f64, | ||
} | ||
|
||
impl LinearModel { | ||
pub(super) fn new( | ||
transfer_fn: &TransferFn, | ||
start: u32, | ||
end: u32, | ||
man_index_width: u32, | ||
t_width: u32, | ||
) -> Self { | ||
let TransferFn { | ||
linear_scale, | ||
alpha, | ||
beta, | ||
gamma, | ||
.. | ||
} = *transfer_fn; | ||
|
||
let beta_bits = (beta as f32).to_bits(); | ||
// Corresponds to the scale between differentials. Specifically, | ||
// `dx = exp_scale * dt` | ||
let exp_scale = f32::from_bits(((start >> 23) - man_index_width - t_width) << 23) as f64; | ||
let start_x = f32::from_bits(start) as f64; | ||
let end_x = f32::from_bits(end) as f64; | ||
|
||
// If the transfer function is purely linear on a given interval, | ||
// integration is unnecessary. | ||
if let Some(linear_scale) = linear_scale { | ||
if end <= beta_bits { | ||
return Self { | ||
scale: linear_scale * exp_scale, | ||
bias: linear_scale * start_x, | ||
}; | ||
} | ||
} | ||
|
||
let max_t = 2.0f64.powi(t_width as i32); | ||
|
||
let (integral_y, integral_ty) = match linear_scale { | ||
Some(linear_scale) if start < beta_bits => { | ||
let beta_t = | ||
(beta_bits << (9 + man_index_width)) as f64 * 2.0f64.powi(t_width as i32 - 32); | ||
let int_linear = | ||
integrate_linear((start_x, beta), (0.0, beta_t), linear_scale, exp_scale); | ||
let int_exponential = | ||
integrate_exponential((beta, end_x), (beta_t, max_t), alpha, gamma, exp_scale); | ||
( | ||
int_linear.0 + int_exponential.0, | ||
int_linear.1 + int_exponential.1, | ||
) | ||
} | ||
_ => integrate_exponential((start_x, end_x), (0.0, max_t), alpha, gamma, exp_scale), | ||
}; | ||
let max_t2 = max_t * max_t; | ||
let integral_t = max_t2 * 0.5; | ||
let integral_t2 = max_t2 * max_t / 3.0; | ||
|
||
let scale = (max_t * integral_ty - integral_t * integral_y) | ||
/ (max_t * integral_t2 - integral_t * integral_t); | ||
Self { | ||
scale, | ||
bias: (integral_y - scale * integral_t) / max_t, | ||
} | ||
} | ||
|
||
pub(super) fn into_u8_lookup(self) -> u32 { | ||
let scale_uint = (255.0 * self.scale * 65536.0 + 0.5) as u32; | ||
let bias_uint = (((255.0 * self.bias + 0.5) * 128.0 + 0.5) as u32) << 9; | ||
(bias_uint << 7) | scale_uint | ||
} | ||
|
||
pub(super) fn into_u16_lookup(self) -> u64 { | ||
let scale_uint = (65535.0 * self.scale * 4294967296.0 + 0.5) as u64; | ||
let bias_uint = (((65535.0 * self.bias + 0.5) * 32768.0 + 0.5) as u64) << 17; | ||
(bias_uint << 15) | scale_uint | ||
} | ||
} | ||
|
||
fn integrate_linear( | ||
(start_x, end_x): (f64, f64), | ||
(start_t, end_t): (f64, f64), | ||
linear_scale: f64, | ||
exp_scale: f64, | ||
) -> (f64, f64) { | ||
let antiderive_y = |x: f64| 0.5 * linear_scale * x * x / exp_scale; | ||
let antiderive_ty = | ||
|x: f64, t: f64| 0.5 * linear_scale * x * x * (t - x / (3.0 * exp_scale)) / exp_scale; | ||
|
||
( | ||
antiderive_y(end_x) - antiderive_y(start_x), | ||
antiderive_ty(end_x, end_t) - antiderive_ty(start_x, start_t), | ||
) | ||
} | ||
|
||
fn integrate_exponential( | ||
(start_x, end_x): (f64, f64), | ||
(start_t, end_t): (f64, f64), | ||
alpha: f64, | ||
gamma: f64, | ||
exp_scale: f64, | ||
) -> (f64, f64) { | ||
let one_plus_gamma_inv = 1.0 + gamma.recip(); | ||
let antiderive_y = |x: f64, t: f64| { | ||
alpha * gamma * x.powf(one_plus_gamma_inv) / (exp_scale * (1.0 + gamma)) + (1.0 - alpha) * t | ||
}; | ||
let antiderive_ty = |x: f64, t: f64| { | ||
alpha | ||
* gamma | ||
* x.powf(one_plus_gamma_inv) | ||
* (t - gamma * x / (exp_scale * (1.0 + 2.0 * gamma))) | ||
/ (exp_scale * (1.0 + gamma)) | ||
+ 0.5 * (1.0 - alpha) * t * t | ||
}; | ||
|
||
( | ||
antiderive_y(end_x, end_t) - antiderive_y(start_x, start_t), | ||
antiderive_ty(end_x, end_t) - antiderive_ty(start_x, start_t), | ||
) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.