Skip to content

Commit

Permalink
Merge pull request #19 from ODAncona/s5
Browse files Browse the repository at this point in the history
s5e1b
  • Loading branch information
ODAncona authored Dec 6, 2021
2 parents 8adae03 + 6350b58 commit 546d0c0
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 5 deletions.
Binary file added LatexPourLeProfDeMaths.pdf
Binary file not shown.
21 changes: 16 additions & 5 deletions src/serie5/exo1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,17 +2,28 @@
\donnee{Considérons une variable aléatoire $\X$ dont la fonction de densité est $f_x(u)=
\begin{cases}
\frac{1}{2} & \text{si $-1\leq u \leq 1$ } \\
x & \text{$0$ sinon.} \\
0 & \text{ sinon.} \\
\end{cases}$
Calculez les probabilités:}
\begin{subexo}{$P(\X = \frac{3}{4})$}
\begin{center}
La probabilité $P(\X = \frac{3}{4}) = 0$
\end{center}
\end{subexo}
\begin{subexo}{$P(-\frac{1}{2} \leq \X \leq \frac{1}{2})$}
\end{subexo}
\begin{flushleft}
\begin{align*}
\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}}{F(x)}dx &=\int_{-\frac{1}{2}}^{\frac{1}{2}}{\frac{1}{2}}du\\
&= \dfrac{u}{2}\bigg\vert_{-\frac{1}{2}}^{\frac{1}{2}}\\
&= \frac{1}{4}-(-\frac{1}{4}) \\
&= \frac{1}{2}
\end{align*}
\end{flushleft}
\end{subexo}
\begin{subexo}{$P(\X \leq \frac{1}{2})$}
\end{subexo}
\end{subexo}
\begin{subexo}{$P(\X^{2} \geq \frac{1}{4})$}
\end{subexo}
\end{subexo}
\begin{subexo}{$P(\X \in A)$$A = \intervalleff{-\frac{1}{2}}{0}\cup\intervalleff{\frac{3}{4}}{2}$}
\end{subexo}
\end{subexo}
\end{exo}

0 comments on commit 546d0c0

Please sign in to comment.