Skip to content

NshanPotikyan/TransferLearningTimeSeries

Repository files navigation

Transfer Learning on Time Series Prediction

To find out more about the project, you can click here. Here is an example how to get things going with the script.

%run -i Preprocessing.py
%run -i Models.py
%run -i Visualizing.py
Using TensorFlow backend.
N = 2000 
T = N / 10
t = np.linspace(0,T,N)
stdv = 0.3
sin_series = np.sin(t) + np.random.normal(0,stdv,N)
cos_series = np.cos(t) + np.random.normal(0,stdv,N)
abs_series = abs(sin_series)
incr_sin = t * sin_series
flunc_sin = (t-100) + (t-100) ** 2 * (np.sin((t-100)) + np.random.normal(0,stdv,N))
sin_trend = 20 * (np.sin( np.pi * (np.sqrt(4 * t + 1) - 1) + 0.5 * np.random.normal(0,stdv,N))) + t 
series_dict = {'t':t,
              'sin(t)':sin_series,
              'cos(t)':cos_series,
              '|sin(t)|':abs_series,
              'Increasing Sine':incr_sin,
              'Fluctuating Sine':flunc_sin,
              'Sine with a Trend':sin_trend}
plotSeries(series_dict)

png

ACF(sin_series,lags=100)

png

# to perform a grid search over the parameter
# params_grid = {'input_size': [3,30,70],
#               'hidden_units':[100,[100,50],[100,50,50]],
#               'dropout': [True, False],
#               'learning_rate':[4e-5],
#               'n_ahead':[10],
#               'val_split': [0.2],
#               'epochs':[10],
#               'verbose':[False],
#               'plot':[False]}

# model, logs = GridSearch(sin_series,params_grid)

Training a model on the source domain

Here we fit a model to the first series using the following hyperparameters and evaluate the model.

params = {'input_size': 70,
          'hidden_units':[100,50],
          'dropout': False,
          'learning_rate':4e-5,
          'n_ahead':10,
          'val_split': 0.2,
          'epochs':10,
          'verbose': True,
          'plot': True}
model, mse, hist = FitEvaluate(sin_series,params)
WARNING:tensorflow:From C:\Users\Nshan\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From C:\Users\Nshan\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 1224 samples, validate on 306 samples
Epoch 1/10
1224/1224 [==============================] - 72s 59ms/step - loss: 0.0524 - val_loss: 0.0188
Epoch 2/10
1224/1224 [==============================] - 69s 57ms/step - loss: 0.0115 - val_loss: 0.0069
Epoch 3/10
1224/1224 [==============================] - 73s 60ms/step - loss: 0.0076 - val_loss: 0.0069
Epoch 4/10
1224/1224 [==============================] - 70s 57ms/step - loss: 0.0076 - val_loss: 0.0068
Epoch 5/10
1224/1224 [==============================] - 68s 55ms/step - loss: 0.0075 - val_loss: 0.0068
Epoch 6/10
1224/1224 [==============================] - 69s 56ms/step - loss: 0.0075 - val_loss: 0.0068
Epoch 7/10
1224/1224 [==============================] - 70s 57ms/step - loss: 0.0075 - val_loss: 0.0068
Epoch 8/10
1224/1224 [==============================] - 68s 56ms/step - loss: 0.0075 - val_loss: 0.0068
Epoch 9/10
1224/1224 [==============================] - 68s 56ms/step - loss: 0.0074 - val_loss: 0.0067
Epoch 10/10
1224/1224 [==============================] - 69s 56ms/step - loss: 0.0074 - val_loss: 0.0067


======== Prediction Evaluation =========
MSE is 0.0881

png

png

Transfer Learning Experiment

Now let's fit a similar model on the cosine series assuming that there is lack of data (only $100$ values instead of $2000$)

TransferLearning(cos_series[-100:],params,model=model)
*** Fitting a model without knowledge transfer ***
Epoch 1/10
10/10 [==============================] - 3s 276ms/step - loss: 0.0558
Epoch 2/10
10/10 [==============================] - 1s 69ms/step - loss: 0.0488
Epoch 3/10
10/10 [==============================] - 1s 59ms/step - loss: 0.0423
Epoch 4/10
10/10 [==============================] - 1s 66ms/step - loss: 0.0365
Epoch 5/10
10/10 [==============================] - 1s 70ms/step - loss: 0.0312
Epoch 6/10
10/10 [==============================] - 1s 71ms/step - loss: 0.0267
Epoch 7/10
10/10 [==============================] - 1s 55ms/step - loss: 0.0227
Epoch 8/10
10/10 [==============================] - 1s 54ms/step - loss: 0.0196
Epoch 9/10
10/10 [==============================] - 1s 58ms/step - loss: 0.0172
Epoch 10/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0156


*** Fitting a model with knowledge transfer ***
Epoch 1/10
10/10 [==============================] - 3s 262ms/step - loss: 0.0136
Epoch 2/10
10/10 [==============================] - 1s 55ms/step - loss: 0.0133
Epoch 3/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0132
Epoch 4/10
10/10 [==============================] - 1s 52ms/step - loss: 0.0132
Epoch 5/10
10/10 [==============================] - 1s 55ms/step - loss: 0.0132
Epoch 6/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0132
Epoch 7/10
10/10 [==============================] - 1s 54ms/step - loss: 0.0132
Epoch 8/10
10/10 [==============================] - 1s 54ms/step - loss: 0.0132
Epoch 9/10
10/10 [==============================] - 1s 54ms/step - loss: 0.0132
Epoch 10/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0132


======== Results for no knowledge transfer =========
The RMSE is 0.4769


======== Results for knowledge transfer =========
The RMSE is 0.2727

png

png

# to fit on the whole dataset with 50 ahead predictions
# params['n_ahead'] = 50
# TransferLearning(cos_series,params,model=model)

General Domain Tuning

generalTuning(sin_series[-100:],incr_sin[-100:],params)
*** Fitting a model on general domain ***
Epoch 1/10
110/110 [==============================] - 8s 75ms/step - loss: 0.1937
Epoch 2/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0503
Epoch 3/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0433
Epoch 4/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0404
Epoch 5/10
110/110 [==============================] - 6s 52ms/step - loss: 0.0381
Epoch 6/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0362
Epoch 7/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0346
Epoch 8/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0331
Epoch 9/10
110/110 [==============================] - 6s 53ms/step - loss: 0.0317
Epoch 10/10
110/110 [==============================] - 6s 54ms/step - loss: 0.0304

 *** Tuning a model on target domain ***
Epoch 1/10
10/10 [==============================] - 3s 336ms/step - loss: 0.0186
Epoch 2/10
10/10 [==============================] - 1s 52ms/step - loss: 0.0084
Epoch 3/10
10/10 [==============================] - 1s 52ms/step - loss: 0.0062
Epoch 4/10
10/10 [==============================] - 1s 51ms/step - loss: 0.0064
Epoch 5/10
10/10 [==============================] - 1s 52ms/step - loss: 0.0066
Epoch 6/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0066
Epoch 7/10
10/10 [==============================] - 1s 57ms/step - loss: 0.0066
Epoch 8/10
10/10 [==============================] - 1s 51ms/step - loss: 0.0065
Epoch 9/10
10/10 [==============================] - 1s 51ms/step - loss: 0.0065
Epoch 10/10
10/10 [==============================] - 1s 53ms/step - loss: 0.0065

 *** Fitting a model on target domain only ***
Epoch 1/20
10/10 [==============================] - 3s 346ms/step - loss: 0.3173
Epoch 2/20
10/10 [==============================] - 1s 51ms/step - loss: 0.2739
Epoch 3/20
10/10 [==============================] - 1s 52ms/step - loss: 0.2333
Epoch 4/20
10/10 [==============================] - 1s 51ms/step - loss: 0.1951
Epoch 5/20
10/10 [==============================] - 1s 57ms/step - loss: 0.1589
Epoch 6/20
10/10 [==============================] - 1s 58ms/step - loss: 0.1246
Epoch 7/20
10/10 [==============================] - 1s 52ms/step - loss: 0.0928
Epoch 8/20
10/10 [==============================] - 1s 59ms/step - loss: 0.0645
Epoch 9/20
10/10 [==============================] - 1s 51ms/step - loss: 0.0413
Epoch 10/20
10/10 [==============================] - 1s 52ms/step - loss: 0.0246
Epoch 11/20
10/10 [==============================] - 1s 52ms/step - loss: 0.0150
Epoch 12/20
10/10 [==============================] - 1s 51ms/step - loss: 0.0110
Epoch 13/20
10/10 [==============================] - 1s 52ms/step - loss: 0.0098
Epoch 14/20
10/10 [==============================] - 1s 55ms/step - loss: 0.0094
Epoch 15/20
10/10 [==============================] - 1s 58ms/step - loss: 0.0092
Epoch 16/20
10/10 [==============================] - 1s 56ms/step - loss: 0.0091
Epoch 17/20
10/10 [==============================] - 1s 56ms/step - loss: 0.0091
Epoch 18/20
10/10 [==============================] - 1s 63ms/step - loss: 0.0092
Epoch 19/20
10/10 [==============================] - 1s 61ms/step - loss: 0.0092
Epoch 20/20
10/10 [==============================] - 1s 53ms/step - loss: 0.0092


======== Results for pre_tuned model =========
The RMSE is 212.3081


======== Results for tuned model =========
The RMSE is 128.7268


======== Results for target model only =========
The RMSE is 156.496

png

png

png

About

Transfer Learning for Time Series Prediction Task

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages