Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Harmonize spike train annotations #797

Merged
merged 1 commit into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions doc/pyplots/neo_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,14 +32,14 @@

def plot_spiketrains(segment):
for spiketrain in segment.spiketrains:
y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
y = np.ones_like(spiketrain) * spiketrain.annotations['channel_id']
plt.plot(spiketrain, y, '.')
plt.ylabel(segment.name)
plt.setp(plt.gca().get_xticklabels(), visible=False)


def plot_signal(signal, index, colour='b'):
label = "Neuron %d" % signal.annotations['source_ids'][index]
label = "Neuron %d" % signal.annotations['channel_ids'][index]
plt.plot(signal.times, signal[:, index], colour, label=label)
plt.ylabel("%s (%s)" % (signal.name, signal.units._dimensionality.string))
plt.setp(plt.gca().get_xticklabels(), visible=False)
Expand Down
24 changes: 13 additions & 11 deletions pyNN/recording/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def gather_blocks(data, ordered=True):
if ordered:
for segment in merged.segments:
ordered_spiketrains = sorted(
segment.spiketrains, key=lambda s: s.annotations['source_id'])
segment.spiketrains, key=lambda s: s.annotations['channel_id'])
segment.spiketrains = ordered_spiketrains
return merged

Expand Down Expand Up @@ -319,7 +319,7 @@ def _get_current_segment(self, filter_ids=None, variables='all', clear=False):
t_stop=t_stop,
units='ms',
source_population=self.population.label,
source_id=int(id),
channel_id=int(id),
source_index=self.population.id_to_index(int(id)))
)
for train in segment.spiketrains:
Expand All @@ -333,13 +333,15 @@ def _get_current_segment(self, filter_ids=None, variables='all', clear=False):
mask = times <= t_stop
times = times[mask]
id_array = id_array[mask]
channel_ids = np.array(sids, dtype=int)
segment.spiketrains = neo.spiketrainlist.SpikeTrainList.from_spike_time_array(
times, id_array,
np.array(sids, dtype=int),
channel_ids,
t_stop=t_stop,
units="ms",
t_start=self._recording_start_time,
source_population=self.population.label
source_population=self.population.label,
source_index=self.population.id_to_index(channel_ids)
)
segment.spiketrains.segment = segment
else:
Expand All @@ -349,7 +351,7 @@ def _get_current_segment(self, filter_ids=None, variables='all', clear=False):
if signal_array.size > 0:
# may be empty if none of the recorded cells are on this MPI node
units = self.population.find_units(variable)
source_ids = np.fromiter(ids, dtype=int)
channel_ids = np.fromiter(ids, dtype=int)
if len(ids) == signal_array.shape[1]: # one channel per neuron
channel_index = np.array([self.population.id_to_index(id) for id in ids])
else: # multiple recording locations per neuron
Expand All @@ -372,19 +374,19 @@ def _get_current_segment(self, filter_ids=None, variables='all', clear=False):
units=units,
time_units=pq.ms,
name=signal_name,
source_ids=[source_id],
channel_ids=[channel_id],
source_population=self.population.label,
array_annotations={"channel_index": [i]}
)
for i, source_id in zip(channel_index, source_ids)
for i, channel_id in zip(channel_index, channel_ids)
]
else:
# all channels have the same sample times
assert signal_array.shape[0] == times_array.size
signals = [
neo.IrregularlySampledSignal(
times_array, signal_array, units=units, time_units=pq.ms,
name=signal_name, source_ids=source_ids,
name=signal_name, channel_ids=channel_ids,
source_population=self.population.label,
array_annotations={"channel_index": channel_index}
)
Expand All @@ -402,13 +404,13 @@ def _get_current_segment(self, filter_ids=None, variables='all', clear=False):
units=units,
t_start=t_start,
sampling_period=sampling_period,
name=signal_name, source_ids=source_ids,
name=signal_name, channel_ids=channel_ids,
source_population=self.population.label,
array_annotations={"channel_index": channel_index}
)
assert signal.t_stop - current_time - 2 * sampling_period < 1e-10
logger.debug("%d **** ids=%s, channels=%s", mpi_node,
source_ids, signal.array_annotations["channel_index"])
logger.debug("%d **** channel_ids=%s, channel_index=%s", mpi_node,
channel_ids, signal.array_annotations["channel_index"])
segment.analogsignals.append(signal)
signal.segment = segment
return segment
Expand Down
2 changes: 1 addition & 1 deletion pyNN/serialization/sonata.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def read(self):
t_stop=spike_times.max() + 1.0,
t_start=0.0,
units='ms',
source_id=gid)
channel_id=gid)
)
block.segments.append(segment)
return [block]
Expand Down