-
Notifications
You must be signed in to change notification settings - Fork 149
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
878 additions
and
929 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
|
||
from mushroom_rl.algorithms.actor_critic import PPO | ||
from mushroom_rl.core import Core, Logger | ||
from mushroom_rl.environments.mujoco_envs.ant import Ant | ||
from mushroom_rl.policy import GaussianTorchPolicy | ||
|
||
from tqdm import trange | ||
|
||
|
||
class Network(nn.Module): | ||
def __init__(self, input_shape, output_shape, n_features, **kwargs): | ||
super(Network, self).__init__() | ||
|
||
n_input = input_shape[-1] | ||
n_output = output_shape[0] | ||
|
||
self._h1 = nn.Linear(n_input, n_features) | ||
self._h2 = nn.Linear(n_features, n_features) | ||
self._h3 = nn.Linear(n_features, n_output) | ||
|
||
nn.init.xavier_uniform_( | ||
self._h1.weight, gain=nn.init.calculate_gain("relu") / 10 | ||
) | ||
nn.init.xavier_uniform_( | ||
self._h2.weight, gain=nn.init.calculate_gain("relu") / 10 | ||
) | ||
nn.init.xavier_uniform_( | ||
self._h3.weight, gain=nn.init.calculate_gain("linear") / 10 | ||
) | ||
|
||
def forward(self, state, **kwargs): | ||
features1 = F.relu(self._h1(torch.squeeze(state, 1).float())) | ||
features2 = F.relu(self._h2(features1)) | ||
a = self._h3(features2) | ||
|
||
return a | ||
|
||
|
||
def experiment(n_epochs, n_steps, n_episodes_test, seed=0): | ||
|
||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
|
||
logger = Logger(PPO.__name__, results_dir=None) | ||
logger.strong_line() | ||
logger.info("Experiment Algorithm: " + PPO.__name__) | ||
|
||
mdp = Ant() | ||
|
||
actor_lr = 3e-4 | ||
critic_lr = 3e-4 | ||
n_features = 32 | ||
batch_size = 64 | ||
n_epochs_policy = 10 | ||
eps = 0.2 | ||
lam = 0.95 | ||
std_0 = 1.0 | ||
n_steps_per_fit = 2000 | ||
|
||
critic_params = dict( | ||
network=Network, | ||
optimizer={"class": optim.Adam, "params": {"lr": critic_lr}}, | ||
loss=F.mse_loss, | ||
n_features=n_features, | ||
batch_size=batch_size, | ||
input_shape=mdp.info.observation_space.shape, | ||
output_shape=(1,), | ||
) | ||
|
||
alg_params = dict( | ||
actor_optimizer={"class": optim.Adam, "params": {"lr": actor_lr}}, | ||
n_epochs_policy=n_epochs_policy, | ||
batch_size=batch_size, | ||
eps_ppo=eps, | ||
lam=lam, | ||
critic_params=critic_params, | ||
) | ||
|
||
policy_params = dict(std_0=std_0, n_features=n_features) | ||
|
||
policy = GaussianTorchPolicy( | ||
Network, | ||
mdp.info.observation_space.shape, | ||
mdp.info.action_space.shape, | ||
**policy_params, | ||
) | ||
|
||
agent = PPO(mdp.info, policy, **alg_params) | ||
|
||
core = Core(agent, mdp) | ||
|
||
dataset = core.evaluate(n_episodes=n_episodes_test, render=False) | ||
|
||
J = np.mean(dataset.discounted_return) | ||
R = np.mean(dataset.undiscounted_return) | ||
E = agent.policy.entropy() | ||
|
||
logger.epoch_info(0, J=J, R=R, entropy=E) | ||
|
||
for it in trange(n_epochs, leave=False): | ||
core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit) | ||
dataset = core.evaluate(n_episodes=n_episodes_test, render=False) | ||
|
||
J = np.mean(dataset.discounted_return) | ||
R = np.mean(dataset.undiscounted_return) | ||
E = agent.policy.entropy() | ||
|
||
logger.epoch_info(it + 1, J=J, R=R, entropy=E) | ||
|
||
logger.info("Press a button to visualize") | ||
input() | ||
core.evaluate(n_episodes=5, render=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
experiment(n_epochs=50, n_steps=30000, n_episodes_test=10) |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.