-
Notifications
You must be signed in to change notification settings - Fork 149
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
387 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
|
||
from mushroom_rl.algorithms.actor_critic import PPO | ||
from mushroom_rl.core import Core, Logger | ||
from mushroom_rl.environments.mujoco_envs.franka_panda.pick import Pick | ||
from mushroom_rl.policy import GaussianTorchPolicy | ||
|
||
from tqdm import trange | ||
|
||
|
||
class Network(nn.Module): | ||
def __init__(self, input_shape, output_shape, n_features, **kwargs): | ||
super(Network, self).__init__() | ||
|
||
n_input = input_shape[-1] | ||
n_output = output_shape[0] | ||
|
||
self._h1 = nn.Linear(n_input, n_features) | ||
self._h2 = nn.Linear(n_features, n_features) | ||
self._h3 = nn.Linear(n_features, n_output) | ||
|
||
nn.init.xavier_uniform_( | ||
self._h1.weight, gain=nn.init.calculate_gain("relu") / 10 | ||
) | ||
nn.init.xavier_uniform_( | ||
self._h2.weight, gain=nn.init.calculate_gain("relu") / 10 | ||
) | ||
nn.init.xavier_uniform_( | ||
self._h3.weight, gain=nn.init.calculate_gain("linear") / 10 | ||
) | ||
|
||
def forward(self, state, **kwargs): | ||
features1 = F.relu(self._h1(torch.squeeze(state, 1).float())) | ||
features2 = F.relu(self._h2(features1)) | ||
a = self._h3(features2) | ||
|
||
return a | ||
|
||
|
||
def experiment(n_epochs, n_steps, n_episodes_test, seed=0): | ||
|
||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
|
||
logger = Logger(PPO.__name__, results_dir=None) | ||
logger.strong_line() | ||
logger.info("Experiment Algorithm: " + PPO.__name__) | ||
|
||
mdp = Pick() | ||
|
||
actor_lr = 3e-4 | ||
critic_lr = 3e-4 | ||
n_features = 32 | ||
batch_size = 64 | ||
n_epochs_policy = 10 | ||
eps = 0.2 | ||
lam = 0.95 | ||
std_0 = 1.0 | ||
n_steps_per_fit = 2000 | ||
|
||
critic_params = dict( | ||
network=Network, | ||
optimizer={"class": optim.Adam, "params": {"lr": critic_lr}}, | ||
loss=F.mse_loss, | ||
n_features=n_features, | ||
batch_size=batch_size, | ||
input_shape=mdp.info.observation_space.shape, | ||
output_shape=(1,), | ||
) | ||
|
||
alg_params = dict( | ||
actor_optimizer={"class": optim.Adam, "params": {"lr": actor_lr}}, | ||
n_epochs_policy=n_epochs_policy, | ||
batch_size=batch_size, | ||
eps_ppo=eps, | ||
lam=lam, | ||
critic_params=critic_params, | ||
) | ||
|
||
policy_params = dict(std_0=std_0, n_features=n_features) | ||
|
||
policy = GaussianTorchPolicy( | ||
Network, | ||
mdp.info.observation_space.shape, | ||
mdp.info.action_space.shape, | ||
**policy_params, | ||
) | ||
|
||
agent = PPO(mdp.info, policy, **alg_params) | ||
|
||
core = Core(agent, mdp) | ||
|
||
dataset = core.evaluate(n_episodes=n_episodes_test, render=False) | ||
|
||
J = np.mean(dataset.discounted_return) | ||
R = np.mean(dataset.undiscounted_return) | ||
E = agent.policy.entropy() | ||
|
||
logger.epoch_info(0, J=J, R=R, entropy=E) | ||
|
||
for key, value in dataset.info.items(): | ||
print(key, np.mean(value)) | ||
|
||
for it in trange(n_epochs, leave=False): | ||
core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit) | ||
dataset = core.evaluate(n_episodes=n_episodes_test, render=False) | ||
|
||
J = np.mean(dataset.discounted_return) | ||
R = np.mean(dataset.undiscounted_return) | ||
E = agent.policy.entropy() | ||
|
||
logger.epoch_info(it + 1, J=J, R=R, entropy=E) | ||
|
||
for key, value in dataset.info.items(): | ||
print(key, np.mean(value)) | ||
|
||
logger.info("Press a button to visualize") | ||
input() | ||
core.evaluate(n_episodes=5, render=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
experiment(n_epochs=50, n_steps=50000, n_episodes_test=10) |
260 changes: 260 additions & 0 deletions
260
mushroom_rl/environments/mujoco_envs/franka_panda/pick.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import mujoco | ||
|
||
from mushroom_rl.environments.mujoco import ObservationType | ||
from mushroom_rl.rl_utils.spaces import Box | ||
from mushroom_rl.environments.mujoco_envs.franka_panda.panda import Panda | ||
|
||
|
||
class Pick(Panda): | ||
def __init__( | ||
self, | ||
gamma: float = 0.99, | ||
horizon: int = 200, | ||
gripper_cube_distance_reward_weight: float = 0.5, | ||
cube_goal_distance_reward_weight: float = 1.0, | ||
ctrl_cost_weight: float = 0, | ||
contact_cost_weight: float = 0, | ||
n_substeps: int = 10, | ||
cube_reset_noise: float = 0.1, | ||
**viewer_params, | ||
): | ||
xml_path = ( | ||
Path(__file__).resolve().parent.parent | ||
/ "data" | ||
/ "panda" | ||
/ "pick" | ||
/ "pick.xml" | ||
).as_posix() | ||
|
||
additional_data_spec = [ | ||
("cube_pose", "cube", ObservationType.JOINT_POS), | ||
("cube_vel", "cube", ObservationType.JOINT_VEL), | ||
("goal_pos", "goal", ObservationType.BODY_POS), | ||
] | ||
|
||
collision_groups = [ | ||
("cube", ["cube"]), | ||
("table", ["table"]), | ||
] | ||
|
||
self._gripper_cube_distance_reward_weight = gripper_cube_distance_reward_weight | ||
self._cube_goal_distance_reward_weight = cube_goal_distance_reward_weight | ||
self._ctrl_cost_weight = ctrl_cost_weight | ||
self._contact_cost_weight = contact_cost_weight | ||
|
||
self._cube_reset_noise = cube_reset_noise | ||
self._goal_rot = np.array([1.0, 0.0, 0.0, 0.0]) | ||
|
||
super().__init__( | ||
xml_path, | ||
gamma=gamma, | ||
horizon=horizon, | ||
additional_data_spec=additional_data_spec, | ||
collision_groups=collision_groups, | ||
n_substeps=n_substeps, | ||
**viewer_params, | ||
) | ||
|
||
def _modify_mdp_info(self, mdp_info): | ||
self.obs_helper.add_obs("left_fingertip_pos", 3) | ||
self.obs_helper.add_obs("right_fingertip_pos", 3) | ||
self.obs_helper.add_obs("left_cube_pos", 3) | ||
self.obs_helper.add_obs("right_cube_pos", 3) | ||
self.obs_helper.add_obs("cube_pos", 3) | ||
self.obs_helper.add_obs("cube_rot", 4) | ||
self.obs_helper.add_obs("cube_vel", 6) | ||
self.obs_helper.add_obs("goal_pos", 3) | ||
self.obs_helper.add_obs("goal_rot", 4) | ||
self.obs_helper.add_obs("collision_force", 1) | ||
self.obs_helper.add_obs("cube_in_hand", 1) | ||
|
||
mdp_info = super()._modify_mdp_info(mdp_info) | ||
mdp_info.observation_space = Box(*self.obs_helper.get_obs_limits()) | ||
return mdp_info | ||
|
||
def _create_observation(self, obs): | ||
obs = super()._create_observation(obs) | ||
|
||
left_fingertip_pos = self._read_data("left_fingertip_pos") | ||
right_fingertip_pos = self._read_data("right_fingertip_pos") | ||
|
||
left_cube_pos = self._read_data("left_cube_pos") | ||
right_cube_pos = self._read_data("right_cube_pos") | ||
|
||
cube_pose = self._read_data("cube_pose") | ||
cube_vel = self._read_data("cube_vel") | ||
goal_pos = self._read_data("goal_pos") | ||
goal_rot = self._goal_rot | ||
|
||
collision_force = np.array( | ||
[ | ||
np.sum( | ||
np.square( | ||
self._get_collision_force("hand", "floor") | ||
+ self._get_collision_force("left_finger", "floor") | ||
+ self._get_collision_force("right_finger", "floor") | ||
+ self._get_collision_force("robot", "floor") | ||
+ self._get_collision_force("hand", "robot") | ||
+ self._get_collision_force("left_finger", "robot") | ||
+ self._get_collision_force("right_finger", "robot") | ||
+ self._get_collision_force("hand", "right_finger") | ||
+ self._get_collision_force("hand", "left_finger") | ||
+ self._get_collision_force("hand", "cube") | ||
+ self._get_collision_force("robot", "cube") | ||
+ self._get_collision_force("hand", "table") | ||
+ self._get_collision_force("robot", "table") | ||
+ self._get_collision_force("left_finger", "table") | ||
+ self._get_collision_force("right_finger", "table") | ||
) | ||
) | ||
] | ||
) | ||
|
||
cube_in_hand = int(self._is_cube_in_hand()) | ||
cube_in_hand = np.array([cube_in_hand]) # type: ignore | ||
obs = np.concatenate( | ||
[ | ||
obs, | ||
left_fingertip_pos, | ||
right_fingertip_pos, | ||
left_cube_pos, | ||
right_cube_pos, | ||
cube_pose, | ||
cube_vel, | ||
goal_pos, | ||
goal_rot, | ||
collision_force, | ||
cube_in_hand, | ||
] | ||
) | ||
return obs | ||
|
||
def _get_cube_goal_distance(self, obs): | ||
cube_pos = self.obs_helper.get_from_obs(obs, "cube_pos") | ||
goal_pos = self.obs_helper.get_from_obs(obs, "goal_pos") | ||
return np.linalg.norm(cube_pos - goal_pos).item() | ||
|
||
def _get_gripper_cube_distance(self, obs): | ||
left_fingertip_pos = self.obs_helper.get_from_obs(obs, "left_fingertip_pos") | ||
left_cube_pos = self.obs_helper.get_from_obs(obs, "left_cube_pos") | ||
|
||
right_fingertip_pos = self.obs_helper.get_from_obs(obs, "right_fingertip_pos") | ||
right_cube_pos = self.obs_helper.get_from_obs(obs, "right_cube_pos") | ||
|
||
gripper_cube_distance = ( | ||
np.linalg.norm(left_fingertip_pos - left_cube_pos).item() | ||
+ np.linalg.norm(right_fingertip_pos - right_cube_pos).item() | ||
) | ||
return gripper_cube_distance | ||
|
||
def _get_gripper_cube_distance_reward(self, obs): | ||
gripper_cube_distance = self._get_gripper_cube_distance(obs) | ||
distance_reward = -gripper_cube_distance | ||
return self._gripper_cube_distance_reward_weight * distance_reward | ||
|
||
def _get_cube_goal_distance_reward(self, obs): | ||
cube_goal_distance = self._get_cube_goal_distance(obs) | ||
distance_reward = -cube_goal_distance | ||
return self._cube_goal_distance_reward_weight * distance_reward | ||
|
||
def _get_ctrl_cost(self, action): | ||
# [:-1] to exclude the actions of the fingers | ||
ctrl_cost = -np.sum(np.square(action[:-1])) | ||
return self._ctrl_cost_weight * ctrl_cost | ||
|
||
def _get_contact_cost(self, obs): | ||
collision_forces = self.obs_helper.get_from_obs(obs, "collision_force").item() | ||
contact_cost = -collision_forces | ||
return self._contact_cost_weight * contact_cost | ||
|
||
def reward(self, obs, action, next_obs, absorbing): | ||
gripper_cube_distance_reward = self._get_gripper_cube_distance_reward(next_obs) | ||
cube_goal_distance_reward = self._get_cube_goal_distance_reward(next_obs) | ||
ctrl_cost = self._get_ctrl_cost(action) | ||
contact_cost = self._get_contact_cost(next_obs) | ||
|
||
cube_in_hand_reward = 0.05 | ||
|
||
reward = ( | ||
gripper_cube_distance_reward | ||
+ cube_goal_distance_reward | ||
+ ctrl_cost | ||
+ contact_cost | ||
+ cube_in_hand_reward | ||
) | ||
return reward | ||
|
||
def is_absorbing(self, obs): | ||
cube_pos = self.obs_helper.get_from_obs(obs, "cube_pos") | ||
cube_rot = self.obs_helper.get_from_obs(obs, "cube_rot") | ||
goal_pos = self.obs_helper.get_from_obs(obs, "goal_pos") | ||
|
||
cube_goal_distance = np.linalg.norm(goal_pos - cube_pos) | ||
|
||
is_cube_at_goal = cube_goal_distance < 0.05 | ||
is_cube_aligned = ( | ||
self.quaternion_distance(cube_rot, self._goal_rot) < 0.3 or True | ||
) | ||
return (is_cube_at_goal and is_cube_aligned) or self._check_collision( | ||
"cube", "floor" | ||
) | ||
|
||
def setup(self, obs): | ||
super().setup(obs) | ||
# self._randomize_goal_pos() | ||
# self._randomize_cube_pos() | ||
mujoco.mj_forward(self._model, self._data) # type: ignore | ||
|
||
def _create_info_dictionary(self, obs, action): | ||
info = super()._create_info_dictionary(obs) | ||
info["gripper_cube_distance_reward"] = self._get_gripper_cube_distance_reward( | ||
obs | ||
) | ||
info["cube_goal_distance_reward"] = self._get_cube_goal_distance_reward(obs) | ||
info["ctrl_cost"] = self._get_ctrl_cost(action) | ||
info["contact_cost"] = self._get_contact_cost(obs) | ||
info["gripper_cube_distance"] = self._get_gripper_cube_distance(obs) | ||
info["cube_goal_distance"] = self._get_cube_goal_distance(obs) | ||
info["is_cube_in_hand"] = self._is_cube_in_hand() | ||
return info | ||
|
||
def _is_cube_in_hand(self): | ||
# left_cube_pos = self._read_data("left_cube_pos") | ||
# right_cube_pos = self._read_data("right_cube_pos") | ||
# left_fingertip_pos = self._read_data("left_fingertip_pos") | ||
# right_fingertip_pos = self._read_data("right_fingertip_pos") | ||
|
||
is_cube_in_hand = self._check_collision( | ||
"cube", "left_finger" | ||
) and self._check_collision("cube", "right_finger") | ||
return is_cube_in_hand | ||
|
||
def _randomize_goal_pos(self): | ||
self._data.mocap_pos[0][:2] += np.random.uniform(-0.1, 0.1, 2) | ||
|
||
def _randomize_cube_pos(self): | ||
cube_pos = self._read_data("cube_pose") | ||
cube_pos[:2] += np.random.uniform( | ||
-self._cube_reset_noise, self._cube_reset_noise, 2 | ||
) | ||
self._write_data("cube_pose", cube_pos) | ||
|
||
def normalize_quaternion(self, q): | ||
norm = np.linalg.norm(q) | ||
return q / norm | ||
|
||
def quaternion_distance(self, cube_rot, goal_rot): | ||
cube_rot = self.normalize_quaternion(cube_rot) | ||
|
||
cos_half_angle = np.abs(np.dot(cube_rot, goal_rot)) | ||
|
||
theta = 2 * np.arccos(cos_half_angle) | ||
return theta | ||
|
||
# def _compute_action(self, obs, action): | ||
# action = super()._compute_action(obs, action) | ||
# action = np.zeros_like(action) | ||
# return action |