Skip to content

LuizScarsi/aws-vision-insights

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AWS Vision Insights

Image analysis and emotions classification with Amazon Rekognition

📖 Summary

1 - AWS Architecture

AWS Architecture

2 - How to use:

Clone this repository:

git clone https://github.com/LuizScarsi/aws-vision-insights.git

Inside the src folder:

  • Create a .env file to store the BUCKET_NAME and AWS_REGION_NAME:

    touch .env
    
  • Follow the example from example.env file:

    BUCKET_NAME=bucket-name
    AWS_REGION_NAME=region-name
    

Install serverless framework. More information here

npm install -g serverless

Create your credentials (AWS Acess Key and AWS Secret Access Key) with IAM. More information here

Run the following command inserting your credentials:

serverless config credentials \
  --provider aws \
  --key AKIAIOSFODNN7EXAMPLE \
  --secret wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

It is also possible to configure with aws-cli running the following command:

$ aws configure
AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]: ENTER

To deploy in your AWS account access the src folder and run:

serverless deploy

3 - File structure:

  • src
    • controllers
      • v1_controller.py
      • v2_controller.py
    • routes
      • v1
        • v1_description.py
        • v1_vision.py
      • v2
        • v2_description.py
        • v2_vision.py
      • health.py
    • services
      • rekognition.py
      • s3.py
    • utils
      • util.py
    • .example.env
    • serveless.yaml
  • README.md

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages