Skip to content

Commit

Permalink
Change the name of base evaluator class from BaseEvaluator to Evaluat…
Browse files Browse the repository at this point in the history
…or (#101)

* delete the old Evaluator and change name of baseEvaluator to Evaluator

* change import path for places that imported the baseevaluator

* put OldEvaluator back in

* fix up unit tests

---------

Co-authored-by: Eric Charles <[email protected]>
  • Loading branch information
ztq1996 and eacharles authored Apr 8, 2024
1 parent c71ee89 commit 2eb1849
Show file tree
Hide file tree
Showing 7 changed files with 155 additions and 163 deletions.
6 changes: 3 additions & 3 deletions src/rail/evaluation/dist_to_dist_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,14 @@
from qp.metrics.concrete_metric_classes import DistToDistMetric

from rail.core.data import QPHandle
from rail.evaluation.evaluator import BaseEvaluator
from rail.evaluation.evaluator import Evaluator


class DistToDistEvaluator(BaseEvaluator):
class DistToDistEvaluator(Evaluator):
"""Evaluate the performance of a photo-z estimator against reference PDFs"""

name = "DistToDistEvaluator"
config_options = BaseEvaluator.config_options.copy()
config_options = Evaluator.config_options.copy()
config_options.update(
limits=Param(
tuple,
Expand Down
6 changes: 3 additions & 3 deletions src/rail/evaluation/dist_to_point_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,14 @@
from qp.metrics.concrete_metric_classes import DistToPointMetric

from rail.core.data import QPHandle, TableHandle
from rail.evaluation.evaluator import BaseEvaluator
from rail.evaluation.evaluator import Evaluator


class DistToPointEvaluator(BaseEvaluator):
class DistToPointEvaluator(Evaluator):
"""Evaluate the performance of a photo-z estimator against reference point estimate"""

name = "DistToPointEvaluator"
config_options = BaseEvaluator.config_options.copy()
config_options = Evaluator.config_options.copy()
config_options.update(
limits=Param(
tuple,
Expand Down
282 changes: 137 additions & 145 deletions src/rail/evaluation/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,147 +21,6 @@
PointSigmaMAD,
)


class Evaluator(RailStage):
"""Evaluate the performance of a photo-Z estimator"""

name = "Evaluator"
config_options = RailStage.config_options.copy()
config_options.update(
zmin=Param(float, 0., msg="min z for grid"),
zmax=Param(float, 3.0, msg="max z for grid"),
nzbins=Param(int, 301, msg="# of bins in zgrid"),
pit_metrics=Param(str, 'all', msg='PIT-based metrics to include'),
point_metrics=Param(str, 'all', msg='Point-estimate metrics to include'),
hdf5_groupname=Param(str, '', msg='Name of group in hdf5 where redshift data is located'),
do_cde=Param(bool, True, msg='Evaluate CDE Metric'),
redshift_col=SHARED_PARAMS,
)
inputs = [('input', QPHandle),
('truth', Hdf5Handle)]
outputs = [("output", Hdf5Handle)]

def __init__(self, args, comm=None):
"""Initialize Evaluator"""
RailStage.__init__(self, args, comm=comm)

def evaluate(self, data, truth):
"""Evaluate the performance of an estimator
This will attach the input data and truth to this `Evaluator`
(for introspection and provenance tracking).
Then it will call the run() and finalize() methods, which need to
be implemented by the sub-classes.
The run() method will need to register the data that it creates to this Estimator
by using `self.add_data('output', output_data)`.
Parameters
----------
data : qp.Ensemble
The sample to evaluate
truth : Table-like
Table with the truth information
Returns
-------
output : Table-like
The evaluation metrics
"""

self.set_data("input", data)
self.set_data("truth", truth)
self.run()
self.finalize()
return self.get_handle("output")

def run(self):
"""Run method
Evaluate all the metrics and put them into a table
Notes
-----
Get the input data from the data store under this stages 'input' tag
Get the truth data from the data store under this stages 'truth' tag
Puts the data into the data store under this stages 'output' tag
"""

pz_data = self.get_data('input')
if self.config.hdf5_groupname: # pragma: no cover
specz_data = self.get_data('truth')[self.config.hdf5_groupname]
else:
specz_data = self.get_data('truth')
z_true = specz_data[self.config['redshift_col']]

zgrid = np.linspace(self.config.zmin, self.config.zmax, self.config.nzbins+1)

# Create an instance of the PIT class
pitobj = PIT(pz_data, z_true)

# Build reference dictionary of the PIT meta-metrics from this PIT instance
PIT_METRICS = dict(
AD=getattr(pitobj, "evaluate_PIT_anderson_ksamp"),
CvM=getattr(pitobj, "evaluate_PIT_CvM"),
KS=getattr(pitobj, "evaluate_PIT_KS"),
OutRate=getattr(pitobj, "evaluate_PIT_outlier_rate"),
)

# Parse the input configuration to determine which meta-metrics should be calculated
if self.config.pit_metrics == "all":
pit_metrics = list(PIT_METRICS.keys())
else: # pragma: no cover
pit_metrics = self.config.pit_metrics.split()

# Evaluate each of the requested meta-metrics, and store the result in `out_table`
out_table = {}
for pit_metric in pit_metrics:
value = PIT_METRICS[pit_metric]()

# The result objects of some meta-metrics are bespoke scipy objects with inconsistent fields.
# Here we do our best to store the relevant fields in `out_table`.
if isinstance(value, list): # pragma: no cover
out_table[f"PIT_{pit_metric}"] = value
else:
out_table[f"PIT_{pit_metric}_stat"] = [
getattr(value, "statistic", None)
]
out_table[f"PIT_{pit_metric}_pval"] = [getattr(value, "p_value", None)]
out_table[f"PIT_{pit_metric}_significance_level"] = [
getattr(value, "significance_level", None)
]

POINT_METRICS = dict(
SimgaIQR=PointSigmaIQR,
Bias=PointBias,
OutlierRate=PointOutlierRate,
SigmaMAD=PointSigmaMAD,
)
if self.config.point_metrics == "all":
point_metrics = list(POINT_METRICS.keys())
else: # pragma: no cover
point_metrics = self.config.point_metrics.split()

z_mode = None
for point_metric in point_metrics:
if z_mode is None:
z_mode = np.squeeze(pz_data.mode(grid=zgrid))
value = POINT_METRICS[point_metric](z_mode, z_true).evaluate()
out_table[f"POINT_{point_metric}"] = [value]

if self.config.do_cde:
value = CDELoss(pz_data, zgrid, z_true).evaluate()
out_table["CDE_stat"] = [value.statistic]
out_table["CDE_pval"] = [value.p_value]

# Converting any possible None to NaN to write it
out_table_to_write = {
key: np.array(val).astype(float) for key, val in out_table.items()
}
self.add_data("output", out_table_to_write)


def _all_subclasses(a_class):
return set(a_class.__subclasses__()).union(
[s for c in a_class.__subclasses__() for s in _all_subclasses(c)]
Expand All @@ -177,10 +36,10 @@ def _build_metric_dict(a_class):
return the_dict


class BaseEvaluator(RailStage):
class Evaluator(RailStage):
"""Evaluate the performance of a photo-z estimator against reference point estimate"""

name = "BaseEvaluator"
name = "Evaluator"
config_options = RailStage.config_options.copy()
config_options.update(
metrics=Param(
Expand Down Expand Up @@ -345,7 +204,7 @@ def _get_all_data(self):
return all_data

def _process_chunk(self, data_tuple, first): # pragma: no cover
raise NotImplementedError("BaseEvaluator._process_chunk()")
raise NotImplementedError("Evaluator._process_chunk()")

def _process_all_chunk_metrics(self, estimate_data, reference_data, start, end, first):
"""This function takes the properly formatted data and loops over all the
Expand Down Expand Up @@ -418,7 +277,7 @@ def _output_table_chunk_data(self, start, end, out_table, first):


def _process_all(self, data_tuple): # pragma: no cover
raise NotImplementedError("BaseEvaluator._process_all()")
raise NotImplementedError("Evaluator._process_all()")


def _process_all_metrics(self, estimate_data, reference_data):
Expand Down Expand Up @@ -489,3 +348,136 @@ def _build_config_dict(self):
this_metric_class = self._metric_dict[metric_name_]
this_metric = this_metric_class(**sub_dict)
self._cached_metrics[metric_name_] = this_metric


class OldEvaluator(RailStage):
"""Evaluate the performance of a photo-Z estimator"""

name = "OldEvaluator"
config_options = RailStage.config_options.copy()
config_options.update(
zmin=Param(float, 0., msg="min z for grid"),
zmax=Param(float, 3.0, msg="max z for grid"),
nzbins=Param(int, 301, msg="# of bins in zgrid"),
pit_metrics=Param(str, 'all', msg='PIT-based metrics to include'),
point_metrics=Param(str, 'all', msg='Point-estimate metrics to include'),
hdf5_groupname=Param(str, '', msg='Name of group in hdf5 where redshift data is located'),
do_cde=Param(bool, True, msg='Evaluate CDE Metric'),
redshift_col=SHARED_PARAMS,
)
inputs = [('input', QPHandle),
('truth', Hdf5Handle)]
outputs = [("output", Hdf5Handle)]

def __init__(self, args, comm=None):
"""Initialize Evaluator"""
RailStage.__init__(self, args, comm=comm)

def evaluate(self, data, truth):
"""Evaluate the performance of an estimator
This will attach the input data and truth to this `Evaluator`
(for introspection and provenance tracking).
Then it will call the run() and finalize() methods, which need to
be implemented by the sub-classes.
The run() method will need to register the data that it creates to this Estimator
by using `self.add_data('output', output_data)`.
Parameters
----------
data : qp.Ensemble
The sample to evaluate
truth : Table-like
Table with the truth information
Returns
-------
output : Table-like
The evaluation metrics
"""

self.set_data("input", data)
self.set_data("truth", truth)
self.run()
self.finalize()
return self.get_handle("output")

def run(self):
"""Run method
Evaluate all the metrics and put them into a table
Notes
-----
Get the input data from the data store under this stages 'input' tag
Get the truth data from the data store under this stages 'truth' tag
Puts the data into the data store under this stages 'output' tag
"""

pz_data = self.get_data('input')
if self.config.hdf5_groupname: # pragma: no cover
specz_data = self.get_data('truth')[self.config.hdf5_groupname]
else:
specz_data = self.get_data('truth')
z_true = specz_data[self.config['redshift_col']]

zgrid = np.linspace(self.config.zmin, self.config.zmax, self.config.nzbins+1)

# Create an instance of the PIT class
pitobj = PIT(pz_data, z_true)

# Build reference dictionary of the PIT meta-metrics from this PIT instance
PIT_METRICS = dict(
AD=getattr(pitobj, "evaluate_PIT_anderson_ksamp"),
CvM=getattr(pitobj, "evaluate_PIT_CvM"),
KS=getattr(pitobj, "evaluate_PIT_KS"),
OutRate=getattr(pitobj, "evaluate_PIT_outlier_rate"),
)

# Parse the input configuration to determine which meta-metrics should be calculated
if self.config.pit_metrics == "all":
pit_metrics = list(PIT_METRICS.keys())
else: # pragma: no cover
pit_metrics = self.config.pit_metrics.split()

# Evaluate each of the requested meta-metrics, and store the result in `out_table`
out_table = {}
for pit_metric in pit_metrics:
value = PIT_METRICS[pit_metric]()

# The result objects of some meta-metrics are bespoke scipy objects with inconsistent fields.
# Here we do our best to store the relevant fields in `out_table`.
if isinstance(value, list): # pragma: no cover
out_table[f"PIT_{pit_metric}"] = value
else:
out_table[f"PIT_{pit_metric}_stat"] = [
getattr(value, "statistic", None)
]
out_table[f"PIT_{pit_metric}_pval"] = [getattr(value, "p_value", None)]
out_table[f"PIT_{pit_metric}_significance_level"] = [
getattr(value, "significance_level", None)
]

POINT_METRICS = dict(
SimgaIQR=PointSigmaIQR,
Bias=PointBias,
OutlierRate=PointOutlierRate,
SigmaMAD=PointSigmaMAD,
)
if self.config.point_metrics == "all":
point_metrics = list(POINT_METRICS.keys())
else: # pragma: no cover
point_metrics = self.config.point_metrics.split()

z_mode = None
for point_metric in point_metrics:
if z_mode is None:
z_mode = np.squeeze(pz_data.mode(grid=zgrid))
value = POINT_METRICS[point_metric](z_mode, z_true).evaluate()
out_table[f"POINT_{point_metric}"] = [value]

if self.config.do_cde:
value = CDELoss(pz_data, zgrid, z_true).evaluate()
out_table["CDE_stat"] = [value.statistic]
out_table["CDE_pval"] = [value.p_value]

# Converting any possible None to NaN to write it
out_table_to_write = {
key: np.array(val).astype(float) for key, val in out_table.items()
}
self.add_data("output", out_table_to_write)
6 changes: 3 additions & 3 deletions src/rail/evaluation/point_to_point_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,14 @@
from qp.metrics.point_estimate_metric_classes import PointToPointMetric

from rail.core.data import TableHandle, QPHandle
from rail.evaluation.evaluator import BaseEvaluator
from rail.evaluation.evaluator import Evaluator


class PointToPointEvaluator(BaseEvaluator):
class PointToPointEvaluator(Evaluator):
"""Evaluate the performance of a photo-z estimator against reference point estimate"""

name = "PointToPointEvaluator"
config_options = BaseEvaluator.config_options.copy()
config_options = Evaluator.config_options.copy()
config_options.update(
hdf5_groupname=Param(
str, "photometry", required=False, msg="HDF5 Groupname for truth table."
Expand Down
Loading

0 comments on commit 2eb1849

Please sign in to comment.