Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add blending notebook #166

Merged
merged 1 commit into from
Nov 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
283 changes: 283 additions & 0 deletions examples/creation_examples/blending_degrader_demo.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2610a0f0-0c71-4401-896f-734442bcd66d",
"metadata": {},
"source": [
"## Blending Degrader demo\n",
"\n",
"author: Shuang Liang\n",
"\n",
"This notebook demonstrate the use of `rail.creation.degradation.unrec_bl_model`, which uses Friends of Friends to finds sources close to each other and merge them into unrecognized blends"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7a6adc3-68e8-4a1d-842f-bfb0960a1c4a",
"metadata": {},
"outputs": [],
"source": [
"from rail.creation.degraders.unrec_bl_model import UnrecBlModel\n",
"\n",
"from rail.core.data import PqHandle\n",
"from rail.core.stage import RailStage\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd, numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6912a740-31ea-4987-b06d-81ff17cd895a",
"metadata": {},
"outputs": [],
"source": [
"DS = RailStage.data_store\n",
"DS.__class__.allow_overwrite = True\n"
]
},
{
"cell_type": "markdown",
"id": "a282c2ed-141b-4507-8254-dc8fbc9864dc",
"metadata": {},
"source": [
"### Create a random catalog with ugrizy+YJHF bands as the the true input"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1078bc2a-fc54-41c3-bd30-6c447bb971d4",
"metadata": {},
"outputs": [],
"source": [
"data = np.random.normal(23, 3, size = (1000,12))\n",
"data[:, 0] = np.random.uniform(low=0, high=0.03, size=1000)\n",
"data[:, 1] = np.random.uniform(low=0, high=0.03, size=1000)\n",
"\n",
"data_df = pd.DataFrame(data=data, # values\n",
" columns=['ra', 'dec', 'u', 'g', 'r', 'i', 'z', 'y', 'Y', 'J', 'H', 'F'])\n",
"\n",
"data_truth_handle = DS.add_data('input', data_df, PqHandle)\n",
"data_truth = data_truth_handle.data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33c99a4d-8375-4003-9a9a-70fa85a3eb82",
"metadata": {},
"outputs": [],
"source": [
"#data_df.to_parquet('bl_test.pq')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a5636721-a734-4746-bd93-8101bc558b6e",
"metadata": {},
"outputs": [],
"source": [
"plt.scatter(data_truth['ra'], data_truth['dec'], s=5)\n",
"plt.xlabel(\"Ra [Deg]\", fontsize=14)\n",
"plt.ylabel(\"Dec [Deg]\", fontsize=14)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "1da27deb-d167-4f38-8c59-f270184d6ab3",
"metadata": {},
"source": [
"### The blending model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a07f72a0-e24c-4844-90f0-d5a49ac4362b",
"metadata": {},
"outputs": [],
"source": [
"## model configuration; linking length is in arcsecs\n",
"\n",
"blModel = UnrecBlModel.make_stage(name='unrec_bl_model', ra_label='ra', dec_label='dec', linking_lengths=1.0, \\\n",
" bands='ugrizy')\n",
"blModel.get_config_dict()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5f4862a-0621-46d4-8901-7e84b461c424",
"metadata": {},
"outputs": [],
"source": [
"# run the model\n",
"\n",
"outputs = blModel(data_truth)\n",
"\n",
"samples_w_bl = outputs['output'].data\n",
"component_ind = outputs['compInd'].data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc5158dd-f474-4731-b847-b4a7358656b9",
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(figsize=(6, 5), dpi=100)\n",
"\n",
"ax.scatter(data_truth['ra'], data_truth['dec'], s=10, facecolors='none', edgecolors='b', label='Original')\n",
"ax.scatter(samples_w_bl['ra'], samples_w_bl['dec'], s=5, c='r', label='w. Unrec-BL')\n",
"\n",
"ax.legend(loc=2, fontsize=12)\n",
"ax.set_xlabel(\"Ra [Deg]\", fontsize=14)\n",
"ax.set_ylabel(\"Dec [Deg]\", fontsize=14)\n",
"\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "268b3d37-b7fd-4ac1-8457-2104a87c9e6d",
"metadata": {},
"outputs": [],
"source": [
"b = 'r'\n",
"plt.hist(data_truth[b], bins=np.linspace(10, 30, 20), label='Original')\n",
"plt.hist(samples_w_bl[b], bins=np.linspace(10, 30, 20), fill=False, label='w. Unrec-BL')\n",
"\n",
"plt.xlabel(fr'Magnitude ${b}$', fontsize=14)\n",
"plt.legend(fontsize=12)\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1d51c15-1e04-4b22-9abb-9b267965dbeb",
"metadata": {},
"outputs": [],
"source": [
"flux = 10**(-(data_truth[b]-28.10)/2.5) # r band zp for lsst is 28.10\n",
"flux_bl = 10**(-(samples_w_bl[b]-28.10)/2.5)\n",
"\n",
"plt.hist(flux, bins=np.linspace(0, 10000, 40), label='Original')\n",
"plt.hist(flux_bl, bins=np.linspace(0, 10000, 40), fill=False, label='w. Unrec-BL')\n",
"\n",
"plt.xlabel(fr'Flux ${b}$', fontsize=14)\n",
"plt.yscale('log')\n",
"plt.legend(fontsize=12)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "f3ba003e-da62-4bfc-b70e-c07c1112efc0",
"metadata": {},
"source": [
"### Study one BL case"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d3fbd87-b227-43bf-b712-e8a069b51a54",
"metadata": {},
"outputs": [],
"source": [
"## find a source with more than 1 truth component\n",
"\n",
"group_size = 1\n",
"while group_size==1:\n",
"\n",
" rand_ind = np.random.randint(len(samples_w_bl))\n",
" this_bl = samples_w_bl.iloc[rand_ind]\n",
" group_id = this_bl['group_id']\n",
" \n",
" FoF_group = component_ind.query(f\"group_id == {group_id}\")\n",
" group_size = len(FoF_group)\n",
"\n",
"truth_comp = data_truth.iloc[FoF_group.index]\n",
"\n",
"print('Truth RA / Blended RA:')\n",
"print(truth_comp['ra'].to_numpy(), '/', this_bl['ra'])\n",
"print(\"\")\n",
"\n",
"print('Truth DEC / Blended DEC:')\n",
"print(truth_comp['dec'].to_numpy(), '/', this_bl['dec'])\n",
"print(\"\")\n",
"\n",
"for b in 'ugrizy':\n",
" print(f'Truth mag {b} / Blended mag {b}:')\n",
" print(truth_comp[b].to_numpy(), '/', this_bl[b])\n",
" print(\"\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8dacb910-dd26-404f-ba61-4278094b6355",
"metadata": {},
"outputs": [],
"source": [
"\n",
"fig, ax = plt.subplots(figsize=(6, 5), dpi=100)\n",
"\n",
"ax.scatter(this_bl['ra']*3600, this_bl['dec']*3600, s=1e4, c='r')\n",
"ax.scatter(truth_comp['ra']*3600, truth_comp['dec']*3600, s=1e4, facecolors='none', edgecolors='b')\n",
"\n",
"ax.scatter([], [], s=1e2, facecolors='none', edgecolors='b', label='Truth Components')\n",
"ax.scatter([], [], s=1e2, c='r', label='Merged Source')\n",
"\n",
"fig_size = 1 ## in arcsecs\n",
"ax.set_xlim(this_bl['ra']*3600-fig_size, this_bl['ra']*3600+fig_size)\n",
"ax.set_ylim(this_bl['dec']*3600-fig_size, this_bl['dec']*3600+fig_size)\n",
"\n",
"ax.legend(fontsize=12)\n",
"ax.set_xlabel(\"Ra [arcsecs]\", fontsize=14)\n",
"ax.set_ylabel(\"Dec [arcsecs]\", fontsize=14)\n",
"\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fc4b38b-55d1-43ff-9039-ee9c49c54f4d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading