Automated database that stores information on scientific articles from Scopus and PubMed, based on searches by keywords
Use the script create_database.sql to create the database in MySQL
You must properly configure the config_db.py file
DATABASE_CONFIG = {'host': '',
'user': 'lbmcf',
'password': '',
'db': 'publication_db'}
- host: Host or IP
- user: Database user
- password: Database user password
- db: Name of the database
You must properly configure the config_app.py file
APP_CONFIG = {'python_path': '',
'app_path': '',
'query_scopus': '',
'query_pubmed': '',
'api_key_scopus': '',
'api_key_pubmed': '',
'crossref': False,
'first_time': False}
- python_path: Absolute path of the Python 3 executable
- app_path: Absolute path of the application folder (scientific_database path)
- query_scopus: Boolean keywords to search in Scopus
- query_pubmed: Boolean keywords to search in PubMed
- api_key_scopus: Scopus API Key. Here, more information to get your key. (Required)
- api_key_pubmed: E-utilities API Key. Here, more information to get your key. (Default: '')
- crossref: Flag (True or False) that allows complementary data searches from Crossref. (Default: False)
- first_time: Flag (True or False) that indicates if it is the first time the application will be executed (Back-end). (Default: False)
$ python3 main.py
- Molecular and Computational Biology of Fungi Laboratory (LBMCF, ICB - UFMG, Belo Horizonte, Brazil).
This project is licensed under the MIT License - see the LICENSE file for details.