-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 9565939
Showing
13 changed files
with
3,347 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
<!DOCTYPE html> | ||
<html> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="description" | ||
content="Cloth-Splatting: 3D State Estimation from RGB Supervision for Deformable Objects"> | ||
<meta name="keywords" content="Robotics, Computer Vision, Machine Learning, 3D State Estimation, Gaussian Splatting, Vision-based Tracking, De- | ||
formable Objects"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | ||
<title>Cloth-Splatting: 3D State Estimation from RGB Supervision for Deformable Objects</title> | ||
|
||
<script> | ||
window.dataLayer = window.dataLayer || []; | ||
|
||
function gtag() { | ||
dataLayer.push(arguments); | ||
} | ||
|
||
gtag('js', new Date()); | ||
|
||
gtag('config', 'G-PYVRSFMDRL'); | ||
</script> | ||
|
||
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" | ||
rel="stylesheet"> | ||
|
||
<link rel="stylesheet" href="./static/css/bulma.min.css"> | ||
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css"> | ||
<link rel="stylesheet" href="./static/css/bulma-slider.min.css"> | ||
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css"> | ||
<link rel="stylesheet" | ||
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> | ||
<link rel="stylesheet" href="./static/css/index.css"> | ||
|
||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> | ||
<script defer src="./static/js/fontawesome.all.min.js"></script> | ||
<script src="./static/js/bulma-carousel.min.js"></script> | ||
<script src="./static/js/bulma-slider.min.js"></script> | ||
<script src="./static/js/index.js"></script> | ||
</head> | ||
<body> | ||
|
||
<section class="hero"> | ||
<div class="hero-body"> | ||
<div class="container is-max-desktop"> | ||
<div class="columns is-centered"> | ||
<div class="column has-text-centered"> | ||
<h1 class="title is-1 publication-title">Cloth-Splatting: 3D State Estimation from RGB Supervision for Deformable Objects</h1> | ||
<div class="is-size-5 publication-authors"> | ||
<span class="author-block"> | ||
<a href="https://albilo17.github.io/">Alberta Longhini</a><sup>1</sup>, | ||
</span> | ||
<span class="author-block"> | ||
<a href="https://buesma.github.io/">Marcel Büsching</a><sup>1</sup>, | ||
</span> | ||
<span class="author-block"> | ||
<a href="https://www.bart-ai.com/">Bardienus P. Duisterhof </a><sup>2</sup>, | ||
</span> | ||
<span class="author-block"> | ||
<a href="http://jenslundell.ai/">Jens Lundell</a><sup>1</sup>, | ||
</span> | ||
</br> | ||
<span class="author-block"> | ||
<a href="https://ichnow.ski/">Jeffrey Ichnowski</a><sup>2</sup>, | ||
</span> | ||
<span class="author-block"> | ||
<a href="https://www.kth.se/profile/celle">Mårten Björkman</a><sup>1</sup>, | ||
</span> | ||
<span class="author-block"> | ||
<a href="https://www.kth.se/profile/dani">Danica Kragic</a><sup>1</sup> | ||
</span> | ||
|
||
</div> | ||
|
||
<div class="is-size-5 publication-authors"> | ||
<span class="author-block"><sup>1</sup>KTH Royal Institute of Technology </span> | ||
<span class="author-block"><sup>2</sup>Carnegie Mellon University </span> | ||
</div> | ||
|
||
<h1 style="font-size:24px;font-weight:bold">preprint</h1> | ||
|
||
<div class="column has-text-centered"> | ||
<div class="publication-links"> | ||
<!-- PDF Link. --> | ||
<!-- <span class="link-block"> | ||
<a href="ADD ME" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fas fa-file-pdf"></i> | ||
</span> | ||
<span>Paper</span> | ||
</a> | ||
</span> --> | ||
<span class="link-block"> | ||
<a href="ADD ME" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="ai ai-arxiv"></i> | ||
</span> | ||
<span>arXiv</span> | ||
</a> | ||
</span> | ||
<!-- Video Link. --> | ||
<!-- <span class="link-block"> | ||
<a href="ADD ME" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fab fa-youtube"></i> | ||
</span> | ||
<span>Video</span> | ||
</a> | ||
</span> --> | ||
<!-- Code Link. --> | ||
<span class="link-block"> | ||
<a href="ADD ME" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fab fa-github"></i> | ||
</span> | ||
<span>Code (soon)</span> | ||
</a> | ||
</span> | ||
<!-- Dataset Link. --> | ||
<!-- <span class="link-block"> | ||
<a href="ADD ME" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="far fa-images"></i> | ||
</span> | ||
<span>Data</span> | ||
</a> | ||
</span> --> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</section> | ||
|
||
|
||
<section class="section"> | ||
<div class="container is-max-desktop"> | ||
<!-- Abstract. --> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Abstract</h2> | ||
<div class="content has-text-justified"> | ||
High-quality state estimation of highly deformable objects can enable new applications in robotics while aiding existing imitation learning approaches. Precise 3D state estimation remains a significant challenge for deformable objects like cloths due to their infinite-dimensional state space and complex, often self-occluding, configurations. | ||
<br><br> | ||
We propose Cloth-Splatting, a novel method for estimating the 3D state of cloth from sparse RGB observations by combining a learned 3D model of the cloth with Gaussian Splatting. Our key insight is that by integrating Gaussian Splatting with the 3D state predictions of a learned cloth model, we can leverage Gaussian Splatting as a differentiable map between 3D state representations and image observations. This differentiable property enables the refinement of inaccurate state predictions using only RGB supervision. The experiments suggest that Cloth-Splatting outperforms state-of-the-art 3D tracking baselines in state estimation accuracy. Additionally, Cloth-Splatting reduces convergence time by ~85% over the state-of-the-art. | ||
</div> | ||
</div> | ||
<!--/ Abstract. --> | ||
<!-- Paper video. --> | ||
<!--/<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Video</h2> | ||
<div class="publication-video"> | ||
<iframe width="560" height="315" src="ADD ME" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> | ||
</div> | ||
</div> | ||
</div> --> | ||
<!-- <video controls> | ||
<source src="SuppVideo.mp4" type="video/mp4"> | ||
</video> --> | ||
<!--/ Paper video. --> | ||
</div> | ||
</section> | ||
|
||
|
||
<section class="section" id="BibTeX"> | ||
<div class="container is-max-desktop content"> | ||
<h2 class="title">BibTeX</h2> | ||
<pre><code> | ||
@misc{longhini2024cloth, | ||
title = {Cloth-Splatting: 3D State Estimation from RGB Supervision for Deformable Objects}, | ||
author = {Alberta Longhini and Marcel Büsching and Bardienus Pieter Duisterhof and Jens Lundell and Jeffrey Ichnowski and Mårten Björkman and Danica Kragic }, | ||
year = {2024}, | ||
eprint = {ADD ME}, | ||
archivePrefix = {arXiv}, | ||
}</code></pre> | ||
</div> | ||
</section> | ||
|
||
<section class="section"> | ||
<div class="container is-max-desktop"> | ||
<!-- Abstract. --> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Acknowledgments</h2> | ||
<div class="content has-text-justified"> | ||
This work was supported by the Swedish Research Council; the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation; the European Research Council (ERC-884807); and the Center for Machine Learning and Health (CMLH). The computations were enabled by the the Pittsburgh Supercomputing Center and by the Berzelius resource provided by the Knut and Alice Wallenberg Foundation at the Swedish National Supercomputer Centre. | ||
</div> | ||
</div> | ||
<!--/ Abstract. --> | ||
<!-- Paper video. --> | ||
<!--/<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Video</h2> | ||
<div class="publication-video"> | ||
<iframe width="560" height="315" src="ADD ME" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe> | ||
</div> | ||
</div> | ||
</div> --> | ||
<!-- <video controls> | ||
<source src="SuppVideo.mp4" type="video/mp4"> | ||
</video> --> | ||
<!--/ Paper video. --> | ||
</div> | ||
</section> | ||
|
||
|
||
|
||
<footer class="footer"> | ||
<div align="center" class="container"> | ||
<div class="columns is-centered"> | ||
<div class="content"> | ||
This website is borrowed from <a href="https://github.com/3d-moments/3d-moments.github.io">3D Moments</a> and <a href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>. | ||
</div> | ||
</div> | ||
</div> | ||
</footer> | ||
|
||
|
||
</body> | ||
</html> |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Oops, something went wrong.