Skip to content

Commit

Permalink
[WIP] Fixes for 0.7 (#14)
Browse files Browse the repository at this point in the history
* fixes 🐱

* missed some deps

* modernize tests

* more fixes, tests are breaking

* tests working

* updated travis to use 0.7 and 1.0
  • Loading branch information
rejuvyesh authored and zsunberg committed Sep 13, 2018
1 parent aaf1f62 commit c6fedcd
Show file tree
Hide file tree
Showing 10 changed files with 148 additions and 123 deletions.
13 changes: 7 additions & 6 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,16 @@ os:
- linux
# - osx
julia:
- 0.6
- 0.7
- 1.0
notifications:
email: false
# uncomment the following lines to override the default test script
script:
- if [[ -a .git/shallow ]]; then git fetch --unshallow; fi
- julia -e 'Pkg.clone(pwd()); Pkg.build("ParticleFilters")'
# - julia -e 'include(Pkg.dir("ParticleFilters", "test", "build.jl"))'
- julia -e 'Pkg.test("ParticleFilters"; coverage=true)'
# script:
# - if [[ -a .git/shallow ]]; then git fetch --unshallow; fi
# - julia -e 'Pkg.clone(pwd()); Pkg.build("ParticleFilters")'
# # - julia -e 'include(Pkg.dir("ParticleFilters", "test", "build.jl"))'
# - julia -e 'Pkg.test("ParticleFilters"; coverage=true)'
after_success:
# push coverage results to Coveralls
- julia -e 'cd(Pkg.dir("ParticleFilters")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder())'
Expand Down
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ For example, a double integrator model (written for clarity, not speed) is shown

```julia
using ParticleFilters
using LinearAlgebra
using Distributions
using Reel
using Plots
Expand All @@ -63,7 +64,7 @@ function ParticleFilters.observation(model::DblIntegrator2D, u, sp)
end

N = 1000
model = DblIntegrator2D(0.001*eye(4), eye(2), 0.1)
model = DblIntegrator2D(0.001*Diagonal{Float64}(I, 4), Diagonal{Float64}(I, 2), 0.1)
filter = SIRParticleFilter(model, N)
srand(1)
rng = Base.GLOBAL_RNG
Expand Down
3 changes: 2 additions & 1 deletion REQUIRE
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
julia 0.6
StatsBase
POMDPs 0.6
POMDPToolbox 0.2.7
POMDPModelTools
POMDPPolicies
47 changes: 26 additions & 21 deletions src/ParticleFilters.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,17 +3,21 @@ __precompile__()
module ParticleFilters

using POMDPs
import POMDPs: pdf, mode, update, initialize_belief, iterator
import POMDPs: state_type, isterminal, observation
import POMDPs: pdf, mode, update, initialize_belief, support
import POMDPs: statetype, isterminal, observation
import POMDPs: generate_s
import POMDPs: action, value
import POMDPs: implemented
import POMDPs: sampletype
import Base: rand, mean

using POMDPToolbox
import POMDPToolbox: obs_weight
import POMDPModelTools: obs_weight
using StatsBase
using Random
using Statistics
using POMDPPolicies

import Random: rand
import Statistics: mean

export
AbstractParticleBelief,
Expand All @@ -40,18 +44,19 @@ export
pdf,
mode,
update,
support,
initialize_belief

export
generate_s,
observation,
isterminal,
state_type
statetype

abstract type AbstractParticleBelief{T} end

# DEPRECATED: remove in future release
Base.eltype{T}(::Type{AbstractParticleBelief{T}}) = T
Base.eltype(::Type{AbstractParticleBelief{T}}) where {T} = T

sampletype(::Type{B}) where B<:AbstractParticleBelief{T} where T = T

Expand All @@ -62,21 +67,21 @@ Unweighted particle belief
"""
mutable struct ParticleCollection{T} <: AbstractParticleBelief{T}
particles::Vector{T}
_probs::Nullable{Dict{T,Float64}} # a cache for the probabilities
_probs::Union{Nothing, Dict{T,Float64}} # a cache for the probabilities

ParticleCollection{T}() where {T} = new(T[], nothing)
ParticleCollection{T}(particles) where {T} = new(particles, Nullable{Dict{T,Float64}}())
ParticleCollection{T}(particles) where {T} = new(particles, Dict{T,Float64}())
ParticleCollection{T}(particles, _probs) where {T} = new(particles, _probs)
end
ParticleCollection{T}(p::AbstractVector{T}) = ParticleCollection{T}(p, nothing)
ParticleCollection(p::AbstractVector{T}) where T = ParticleCollection{T}(p, nothing)

mutable struct WeightedParticleBelief{T} <: AbstractParticleBelief{T}
particles::Vector{T}
weights::Vector{Float64}
weight_sum::Float64
_probs::Nullable{Dict{T,Float64}} # this is not used now, but may be later
_probs::Union{Nothing, Dict{T,Float64}} # this is not used now, but may be later
end
WeightedParticleBelief{T}(particles::AbstractVector{T}, weights::AbstractVector, weight_sum=sum(weights)) = WeightedParticleBelief{T}(particles, weights, weight_sum, nothing)
WeightedParticleBelief(particles::AbstractVector{T}, weights::AbstractVector, weight_sum=sum(weights)) where {T} = WeightedParticleBelief{T}(particles, weights, weight_sum, nothing)

### Belief interface ###
# see beliefs.jl for implementation
Expand Down Expand Up @@ -141,14 +146,14 @@ mutable struct SimpleParticleFilter{S,M,R,RNG<:AbstractRNG} <: Updater
_particle_memory::Vector{S}
_weight_memory::Vector{Float64}

SimpleParticleFilter{S, M, R, RNG}(model, resample, rng) where {S,M,R,RNG} = new(model, resample, rng, state_type(model)[], Float64[])
SimpleParticleFilter{S, M, R, RNG}(model, resample, rng) where {S,M,R,RNG} = new(model, resample, rng, statetype(model)[], Float64[])
end
function SimpleParticleFilter{R}(model, resample::R, rng::AbstractRNG)
SimpleParticleFilter{state_type(model),typeof(model),R,typeof(rng)}(model, resample, rng)
function SimpleParticleFilter(model, resample::R, rng::AbstractRNG) where {R}
SimpleParticleFilter{statetype(model),typeof(model),R,typeof(rng)}(model, resample, rng)
end
SimpleParticleFilter(model, resample; rng::AbstractRNG=Base.GLOBAL_RNG) = SimpleParticleFilter(model, resample, rng)
SimpleParticleFilter(model, resample; rng::AbstractRNG=Random.GLOBAL_RNG) = SimpleParticleFilter(model, resample, rng)

function update{S}(up::SimpleParticleFilter{S}, b::ParticleCollection, a, o)
function update(up::SimpleParticleFilter{S}, b::ParticleCollection, a, o) where {S}
ps = particles(b)
pm = up._particle_memory
wm = up._weight_memory
Expand All @@ -173,14 +178,14 @@ function update{S}(up::SimpleParticleFilter{S}, b::ParticleCollection, a, o)
return resample(up.resample, WeightedParticleBelief{S}(pm, wm, sum(wm), nothing), up.rng)
end

function Base.srand(f::SimpleParticleFilter, seed)
srand(f.rng, seed)
function Random.seed!(f::SimpleParticleFilter, seed)
Random.seed!(f.rng, seed)
return f
end


# default for non-POMDPs
state_type(model) = Any
statetype(model) = Any
isterminal(model, s) = false
observation(model, s, a, sp) = observation(model, a, sp)

Expand All @@ -206,7 +211,7 @@ function resample end
### Convenience Aliases ###
const SIRParticleFilter{T} = SimpleParticleFilter{T, LowVarianceResampler}

function SIRParticleFilter(model, n::Int; rng::AbstractRNG=Base.GLOBAL_RNG)
function SIRParticleFilter(model, n::Int; rng::AbstractRNG=Random.GLOBAL_RNG)
return SimpleParticleFilter(model, LowVarianceResampler(n), rng)
end

Expand Down
22 changes: 11 additions & 11 deletions src/beliefs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@ weight_sum(::ParticleCollection) = 1.0
weight(b::ParticleCollection, i::Int) = 1.0/length(b.particles)
particle(b::ParticleCollection, i::Int) = b.particles[i]
rand(rng::AbstractRNG, b::ParticleCollection) = b.particles[rand(rng, 1:length(b.particles))]
mean(b::ParticleCollection) = sum(b.particles)/length(b.particles)
iterator(b::ParticleCollection) = particles(b)
Statistics.mean(b::ParticleCollection) = sum(b.particles)/length(b.particles)
support(b::ParticleCollection) = unique(particles(b))

n_particles(b::WeightedParticleBelief) = length(b.particles)
particles(p::WeightedParticleBelief) = p.particles
Expand All @@ -16,7 +16,7 @@ weight(b::WeightedParticleBelief, i::Int) = b.weights[i]
particle(b::WeightedParticleBelief, i::Int) = b.particles[i]
weights(b::WeightedParticleBelief) = b.weights

function rand(rng::AbstractRNG, b::WeightedParticleBelief)
function Random.rand(rng::AbstractRNG, b::WeightedParticleBelief)
t = rand(rng) * weight_sum(b)
i = 1
cw = b.weights[1]
Expand All @@ -26,10 +26,10 @@ function rand(rng::AbstractRNG, b::WeightedParticleBelief)
end
return particles(b)[i]
end
mean(b::WeightedParticleBelief) = dot(b.weights, b.particles)/weight_sum(b)
Statistics.mean(b::WeightedParticleBelief) = dot(b.weights, b.particles)/weight_sum(b)

function get_probs{S}(b::AbstractParticleBelief{S})
if isnull(b._probs)
function get_probs(b::AbstractParticleBelief{S}) where {S}
if b._probs == nothing
# update the cache
probs = Dict{S, Float64}()
for (i,p) in enumerate(particles(b))
Expand All @@ -39,14 +39,14 @@ function get_probs{S}(b::AbstractParticleBelief{S})
probs[p] = weight(b, i)/weight_sum(b)
end
end
b._probs = Nullable(probs)
b._probs = probs
end
return get(b._probs)
return b._probs
end

pdf{S}(b::AbstractParticleBelief{S}, s::S) = get(get_probs(b), s, 0.0)
pdf(b::AbstractParticleBelief{S}, s::S) where {S} = get(get_probs(b), s, 0.0)

function mode{T}(b::AbstractParticleBelief{T}) # don't know if this is efficient
function mode(b::AbstractParticleBelief{T}) where {T} # don't know if this is efficient
probs = get_probs(b)
best_weight = 0.0
most_likely = first(keys(probs))
Expand All @@ -59,4 +59,4 @@ function mode{T}(b::AbstractParticleBelief{T}) # don't know if this is efficient
return most_likely
end

iterator(b::AbstractParticleBelief) = keys(get_probs(b))
support(b::AbstractParticleBelief) = keys(get_probs(b))
4 changes: 2 additions & 2 deletions src/policies.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,15 +11,15 @@ the corresponding particle
function unnormalized_util(p::AlphaVectorPolicy, b::AbstractParticleBelief)
util = zeros(n_actions(p.pomdp))
for (i, s) in enumerate(particles(b))
j = state_index(p.pomdp, s)
j = stateindex(p.pomdp, s)
util += weight(b, i)*getindex.(p.alphas, (j,))
end
return util
end

function action(p::AlphaVectorPolicy, b::AbstractParticleBelief)
util = unnormalized_util(p, b)
ihi = indmax(util)
ihi = argmax(util)
return p.action_map[ihi]
end

Expand Down
12 changes: 6 additions & 6 deletions src/resamplers.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
function resample{S}(r::ImportanceResampler, b::WeightedParticleBelief{S}, rng::AbstractRNG)
function resample(r::ImportanceResampler, b::WeightedParticleBelief{S}, rng::AbstractRNG) where {S}
ps = Array{S}(r.n)
if weight_sum(b) <= 0
warn("Invalid weights in particle filter: weight_sum = $(weight_sum(b))")
Expand All @@ -8,8 +8,8 @@ function resample{S}(r::ImportanceResampler, b::WeightedParticleBelief{S}, rng::
return ParticleCollection(ps)
end

function resample{S}(re::LowVarianceResampler, b::AbstractParticleBelief{S}, rng::AbstractRNG)
ps = Array{S}(re.n)
function resample(re::LowVarianceResampler, b::AbstractParticleBelief{S}, rng::AbstractRNG) where {S}
ps = Array{S}(undef, re.n)
r = rand(rng)*weight_sum(b)/re.n
c = weight(b,1)
i = 1
Expand All @@ -25,18 +25,18 @@ function resample{S}(re::LowVarianceResampler, b::AbstractParticleBelief{S}, rng
return ParticleCollection(ps)
end

function resample{S}(re::LowVarianceResampler, b::ParticleCollection{S}, rng::AbstractRNG)
function resample(re::LowVarianceResampler, b::ParticleCollection{S}, rng::AbstractRNG) where {S}
r = rand(rng)*n_particles(b)/re.n
chunk = n_particles(b)/re.n
inds = ceil.(Int, chunk*(0:re.n-1)+r)
inds = ceil.(Int, chunk*(0:re.n-1).+r)
ps = particles(b)[inds]
return ParticleCollection(ps)
end

resample(r::Union{ImportanceResampler,LowVarianceResampler}, b, rng::AbstractRNG) = resample(r, b, sampletype(b), rng)

function resample(r::Union{ImportanceResampler,LowVarianceResampler}, b, sampletype::Type, rng::AbstractRNG)
ps = Array{sampletype}(r.n)
ps = Array{sampletype}(undef, r.n)
for i in 1:r.n
ps[i] = rand(rng, b)
end
Expand Down
2 changes: 1 addition & 1 deletion src/updater.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
initialize_belief{S}(up::SimpleParticleFilter{S}, d::Any) = resample(up.resample, d, S, up.rng)
initialize_belief(up::SimpleParticleFilter{S}, d::Any) where {S} = resample(up.resample, d, S, up.rng)

resample(f::Function, d::Any, rng::AbstractRNG) = f(d, rng)
38 changes: 21 additions & 17 deletions test/example.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
using ParticleFilters
using Distributions
using StaticArrays
using LinearAlgebra
using Random

struct DblIntegrator2D
W::Matrix{Float64} # Process noise covariance
Expand All @@ -22,22 +24,24 @@ function ParticleFilters.observation(model::DblIntegrator2D, a, sp)
return MvNormal(sp[1:2], model.V)
end

N = 1000
model = DblIntegrator2D(0.001*eye(4), eye(2), 0.1)
filter = SIRParticleFilter(model, N)
srand(1)
rng = Base.GLOBAL_RNG
b = ParticleCollection([4.0*rand(4)-2.0 for i in 1:N])
s = [0.0, 1.0, 1.0, 0.0]
for i in 1:100
global b, s; print(".")
m = mean(b)
a = [-m[1], -m[2]] # try to orbit the origin
s = generate_s(model, s, a, rng)
o = rand(observation(model, a, s))
b = update(filter, b, a, o)
@testset "example" begin
N = 1000
model = DblIntegrator2D(0.001*Diagonal{Float64}(I, 4), Diagonal{Float64}(I, 2), 0.1)
filter = SIRParticleFilter(model, N)
Random.seed!(1)
rng = Random.GLOBAL_RNG
b = ParticleCollection([4.0*rand(4).-2.0 for i in 1:N])
s = [0.0, 1.0, 1.0, 0.0]
for i in 1:100
print(".")
m = mean(b)
a = [-m[1], -m[2]] # try to orbit the origin
s = generate_s(model, s, a, rng)
o = rand(observation(model, a, s))
b = update(filter, b, a, o)

# scatter([p[1] for p in particles(b)], [p[2] for p in particles(b)], color=:black, markersize=0.1, label="")
# scatter!([s[1]], [s[2]], color=:blue, xlim=(-5,5), ylim=(-5,5), title=t, label="")
# scatter([p[1] for p in particles(b)], [p[2] for p in particles(b)], color=:black, markersize=0.1, label="")
# scatter!([s[1]], [s[2]], color=:blue, xlim=(-5,5), ylim=(-5,5), title=t, label="")
end
# write("particles.gif", film)
end
# write("particles.gif", film)
Loading

0 comments on commit c6fedcd

Please sign in to comment.