Skip to content

Commit

Permalink
Added controller brains for different memory densities and lengths
Browse files Browse the repository at this point in the history
  • Loading branch information
sergiopaniego committed Dec 19, 2023
1 parent 59db63e commit 1c31e21
Show file tree
Hide file tree
Showing 9 changed files with 2,134 additions and 7 deletions.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from utils.logger import logger
from traceback import print_exc

PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'CARLA/'
PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/'

from tensorflow.python.framework.errors_impl import NotFoundError
from tensorflow.python.framework.errors_impl import UnimplementedError
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from utils.logger import logger
from traceback import print_exc

PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'CARLA/'
PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/'

from tensorflow.python.framework.errors_impl import NotFoundError
from tensorflow.python.framework.errors_impl import UnimplementedError
Expand Down Expand Up @@ -170,9 +170,11 @@ def execute(self):
self.image_8 = img
elif type(self.image_9) is int:
self.image_9 = img
elif type(self.image_10) is int:
self.image_10 = img
else:
self.bird_eye_view_images += 1
if (self.image_9==img).all() == False:
if (self.image_10==img).all() == False:
self.bird_eye_view_unique_images += 1
self.image_1 = self.image_2
self.image_2 = self.image_3
Expand All @@ -182,9 +184,11 @@ def execute(self):
self.image_6 = self.image_7
self.image_7 = self.image_8
self.image_8 = self.image_9
self.image_9 = img
self.image_9 = self.image_10
self.image_10 = img

img = [self.image_1, self.image_4, self.image_9]
#img = [self.image_1, self.image_4, self.image_9]
img = [self.image_1, self.image_5, self.image_10]
img = np.expand_dims(img, axis=0)

start_time = time.time()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from utils.logger import logger
from traceback import print_exc

PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'CARLA/'
PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/'

from tensorflow.python.framework.errors_impl import NotFoundError
from tensorflow.python.framework.errors_impl import UnimplementedError
Expand Down Expand Up @@ -239,7 +239,7 @@ def execute(self):
self.motors.sendSteer(0.0)
self.motors.sendBrake(0)
else:
self.motors.sendThrottle(0.75)
self.motors.sendThrottle(throttle)
self.motors.sendSteer(steer)
self.motors.sendBrake(break_command)

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
import csv
import cv2
import math
import numpy as np
import threading
import time
import carla
from os import path
from albumentations import (
Compose, Normalize, RandomRain, RandomBrightness, RandomShadow, RandomSnow, RandomFog, RandomSunFlare
)
from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH
from utils.logger import logger
from traceback import print_exc

PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/'

from tensorflow.python.framework.errors_impl import NotFoundError
from tensorflow.python.framework.errors_impl import UnimplementedError
import tensorflow as tf

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

#gpus = tf.config.experimental.list_physical_devices('GPU')
#for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)



class Brain:

def __init__(self, sensors, actuators, handler, model, config=None):
self.camera_0 = sensors.get_camera('camera_0')
self.camera_1 = sensors.get_camera('camera_1')
self.camera_2 = sensors.get_camera('camera_2')
self.camera_3 = sensors.get_camera('camera_3')

self.cameras_first_images = []

self.pose = sensors.get_pose3d('pose3d_0')

self.bird_eye_view = sensors.get_bird_eye_view('bird_eye_view_0')

self.motors = actuators.get_motor('motors_0')
self.handler = handler
self.config = config
self.inference_times = []
self.gpu_inference = True if tf.test.gpu_device_name() else False

self.threshold_image = np.zeros((640, 360, 3), np.uint8)
self.color_image = np.zeros((640, 360, 3), np.uint8)

client = carla.Client('localhost', 2000)
client.set_timeout(10.0) # seconds
world = client.get_world()

time.sleep(5)
self.vehicle = world.get_actors().filter('vehicle.*')[0]

if model:
if not path.exists(PRETRAINED_MODELS + model):
logger.info("File " + model + " cannot be found in " + PRETRAINED_MODELS)
logger.info("** Load TF model **")
self.net = tf.keras.models.load_model(PRETRAINED_MODELS + model)
logger.info("** Loaded TF model **")
else:
logger.info("** Brain not loaded **")
logger.info("- Models path: " + PRETRAINED_MODELS)
logger.info("- Model: " + str(model))

self.image_1 = 0
self.image_2 = 0
self.image_3 = 0
self.image_4 = 0
self.image_5 = 0
self.image_6 = 0
self.image_7 = 0
self.image_8 = 0
self.image_9 = 0
self.image_10 = 0

self.image_11 = 0
self.image_12 = 0
self.image_13 = 0
self.image_14 = 0
self.image_15 = 0
self.image_16 = 0
self.image_17 = 0
self.image_18 = 0
self.image_19 = 0
self.image_20 = 0

self.bird_eye_view_images = 0
self.bird_eye_view_unique_images = 0


def update_frame(self, frame_id, data):
"""Update the information to be shown in one of the GUI's frames.
Arguments:
frame_id {str} -- Id of the frame that will represent the data
data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc)
"""
if data.shape[0] != data.shape[1]:
if data.shape[0] > data.shape[1]:
difference = data.shape[0] - data.shape[1]
extra_left, extra_right = int(difference/2), int(difference/2)
extra_top, extra_bottom = 0, 0
else:
difference = data.shape[1] - data.shape[0]
extra_left, extra_right = 0, 0
extra_top, extra_bottom = int(difference/2), int(difference/2)


data = np.pad(data, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0)

self.handler.update_frame(frame_id, data)

def update_pose(self, pose_data):
self.handler.update_pose3d(pose_data)

def execute(self):
image = self.camera_0.getImage().data
image_1 = self.camera_1.getImage().data
image_2 = self.camera_2.getImage().data
image_3 = self.camera_3.getImage().data

bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle)
bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB)

if self.cameras_first_images == []:
self.cameras_first_images.append(image)
self.cameras_first_images.append(image_1)
self.cameras_first_images.append(image_2)
self.cameras_first_images.append(image_3)
self.cameras_first_images.append(bird_eye_view_1)

self.cameras_last_images = [
image,
image_1,
image_2,
image_3,
bird_eye_view_1
]

self.update_frame('frame_1', image_1)
self.update_frame('frame_2', image_2)
self.update_frame('frame_3', image_3)

self.update_frame('frame_0', bird_eye_view_1)

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Normalize()
])
image = AUGMENTATIONS_TEST(image=img_base)
img = image["image"]

if type(self.image_1) is int:
self.image_1 = img
elif type(self.image_2) is int:
self.image_2 = img
elif type(self.image_3) is int:
self.image_3 = img
elif type(self.image_4) is int:
self.image_4 = img
elif type(self.image_5) is int:
self.image_5 = img
elif type(self.image_6) is int:
self.image_6 = img
elif type(self.image_7) is int:
self.image_7 = img
elif type(self.image_8) is int:
self.image_8 = img
elif type(self.image_9) is int:
self.image_9 = img

elif type(self.image_10) is int:
self.image_10 = img
elif type(self.image_11) is int:
self.image_11 = img
elif type(self.image_12) is int:
self.image_12 = img
elif type(self.image_13) is int:
self.image_13 = img
elif type(self.image_14) is int:
self.image_14 = img
elif type(self.image_15) is int:
self.image_15 = img
elif type(self.image_16) is int:
self.image_16 = img
elif type(self.image_17) is int:
self.image_17 = img
elif type(self.image_18) is int:
self.image_18 = img
elif type(self.image_19) is int:
self.image_19 = img
elif type(self.image_20) is int:
self.image_20 = img
else:
self.bird_eye_view_images += 1
if (self.image_20==img).all() == False:
self.bird_eye_view_unique_images += 1
self.image_1 = self.image_2
self.image_2 = self.image_3
self.image_3 = self.image_4
self.image_4 = self.image_5
self.image_5 = self.image_6
self.image_6 = self.image_7
self.image_7 = self.image_8
self.image_8 = self.image_9
self.image_9 = self.image_10

self.image_10 = self.image_11
self.image_11 = self.image_12
self.image_12 = self.image_13
self.image_13 = self.image_14
self.image_14 = self.image_15
self.image_15 = self.image_16
self.image_16 = self.image_17
self.image_17 = self.image_18
self.image_18 = self.image_19

self.image_19 = self.image_20
self.image_20 = img


#img = [self.image_1, self.image_4, self.image_9]
#img = [self.image_1, self.image_4, self.image_9, self.image_14, self.image_19, self.image_24, self.image_29, self.image_34, self.image_39]


img = [self.image_1, self.image_10, self.image_20]
img = np.expand_dims(img, axis=0)

start_time = time.time()
try:
prediction = self.net.predict(img, verbose=0)
self.inference_times.append(time.time() - start_time)
throttle = prediction[0][0]
steer = prediction[0][1] * (1 - (-1)) + (-1)
break_command = prediction[0][2]
speed = self.vehicle.get_velocity()
vehicle_speed = 3.6 * math.sqrt(speed.x**2 + speed.y**2 + speed.z**2)

if vehicle_speed > 30:
self.motors.sendThrottle(0.0)
self.motors.sendSteer(steer)
self.motors.sendBrake(break_command)
else:
if vehicle_speed < 5:
self.motors.sendThrottle(1.0)
self.motors.sendSteer(0.0)
self.motors.sendBrake(0)
else:
self.motors.sendThrottle(0.75)
self.motors.sendSteer(steer)
self.motors.sendBrake(break_command)

except NotFoundError as ex:
logger.info('Error inside brain: NotFoundError!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)
except UnimplementedError as ex:
logger.info('Error inside brain: UnimplementedError!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)
except Exception as ex:
logger.info('Error inside brain: Exception!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)
Loading

0 comments on commit 1c31e21

Please sign in to comment.