Skip to content

Commit

Permalink
IPEX embedder compatibility with Haystack v2.4+ (#74)
Browse files Browse the repository at this point in the history
* Updated IPEX embedder to work with new Haystack version (2.7)

Signed-off-by: gadmarkovits <[email protected]>

* Updated after running pre-commit

Signed-off-by: gadmarkovits <[email protected]>

---------

Signed-off-by: gadmarkovits <[email protected]>
  • Loading branch information
gadmarkovits authored Nov 25, 2024
1 parent 1a6ab10 commit 3abaae3
Show file tree
Hide file tree
Showing 2 changed files with 32 additions and 15 deletions.
45 changes: 31 additions & 14 deletions fastrag/embedders/ipex_embedder.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from typing import Dict, List, Optional, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from haystack.components.embedders import (
SentenceTransformersDocumentEmbedder,
SentenceTransformersTextEmbedder,
Expand Down Expand Up @@ -33,7 +34,7 @@ def __init__(
import sentence_transformers

class _IPEXSTTransformers(sentence_transformers.models.Transformer):
def _load_model(self, model_name_or_path, config, cache_dir, **model_args):
def _load_model(self, model_name_or_path, config, cache_dir, backend, **model_args):
print("Loading IPEX ST Transformer model")
optimized_intel_import.check()
self.auto_model = IPEXModel.from_pretrained(
Expand Down Expand Up @@ -89,23 +90,39 @@ def _load_auto_model(
cache_folder: Optional[str],
revision: Optional[str] = None,
trust_remote_code: bool = False,
local_files_only: bool = False,
model_kwargs: Optional[Dict[str, Any]] = None,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
config_kwargs: Optional[Dict[str, Any]] = None,
):
"""
Creates a simple Transformer + Mean Pooling model and returns the modules
"""

shared_kwargs = {
"token": token,
"trust_remote_code": trust_remote_code,
"revision": revision,
"local_files_only": local_files_only,
}
model_kwargs = (
shared_kwargs if model_kwargs is None else {**shared_kwargs, **model_kwargs}
)
tokenizer_kwargs = (
shared_kwargs
if tokenizer_kwargs is None
else {**shared_kwargs, **tokenizer_kwargs}
)
config_kwargs = (
shared_kwargs if config_kwargs is None else {**shared_kwargs, **config_kwargs}
)

transformer_model = _IPEXSTTransformers(
model_name_or_path,
cache_dir=cache_folder,
model_args={
"token": token,
"trust_remote_code": trust_remote_code,
"revision": revision,
},
tokenizer_args={
"token": token,
"trust_remote_code": trust_remote_code,
"revision": revision,
},
model_args=model_kwargs,
tokenizer_args=tokenizer_kwargs,
config_args=config_kwargs,
)
pooling_model = sentence_transformers.models.Pooling(
transformer_model.get_word_embedding_dimension(), "mean"
Expand All @@ -114,7 +131,7 @@ def _load_auto_model(

@property
def device(self):
return "cpu"
return torch.device("cpu")

self.model = _IPEXSentenceTransformer(
model_name_or_path=model,
Expand All @@ -132,7 +149,7 @@ def ipex_model_warm_up(self):
"""
Initializes the component.
"""
if not hasattr(self, "embedding_backend"):
if not getattr(self, "embedding_backend", None):
self.embedding_backend = _IPEXSentenceTransformersEmbeddingBackend(
model=self.model,
device=self.device.to_torch_str(),
Expand Down
2 changes: 1 addition & 1 deletion fastrag/rankers/bi_encoder_ranker.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def run(
scores = torch.tensor(query_vector) @ doc_vectors.T ## perhaps need to break it into chunks
scores = scores.reshape(len(documents))
# Store scores in documents_with_vectors
for doc, score in zip(documents_with_vectors, scores.tolist()):
for doc, score in zip(documents_with_vectors, scores.tolist()):
doc.score = score

indices = scores.cpu().sort(descending=True).indices
Expand Down

0 comments on commit 3abaae3

Please sign in to comment.