-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
370 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
24 changes: 24 additions & 0 deletions
24
src/05computation/include/computation/operators/layernorm.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
#ifndef COMPUTATION_LAYER_NORMALIZATION_H | ||
#define COMPUTATION_LAYER_NORMALIZATION_H | ||
|
||
#include "../operator.h" | ||
|
||
namespace refactor::computation { | ||
|
||
struct LayerNormalization final : public Operator { | ||
float epsilon; | ||
int axis; | ||
|
||
constexpr explicit LayerNormalization(float epsilon_, int axis_) noexcept | ||
: Operator(), epsilon(epsilon_), axis(axis_) {} | ||
|
||
static size_t typeId() noexcept; | ||
size_t opTypeId() const noexcept final; | ||
std::string_view name() const noexcept final; | ||
// kernel::CollectorBox candidateKernels(Target) const final; | ||
std::string serialize() const noexcept final; | ||
}; | ||
|
||
}// namespace refactor::computation | ||
|
||
#endif// COMPUTATION_LAYER_NORMALIZATION_H |
141 changes: 141 additions & 0 deletions
141
src/05computation/include/computation/pass/layernorm_fuse.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
#ifndef COMPUTATION_LAYERNORM_FUSE_H | ||
#define COMPUTATION_LAYERNORM_FUSE_H | ||
|
||
#include "../graph.h" | ||
#include "computation/operators/layernorm.h" | ||
#include "computation/operators/reduce.h" | ||
#include "computation/operators/simple_binary.h" | ||
#include "computation/operators/simple_unary.h" | ||
#include "computation/pass/converter.h" | ||
|
||
namespace refactor::computation { | ||
|
||
class LayernormFuse : public Converter { | ||
public: | ||
virtual bool execute(const std::shared_ptr<GraphMutant> &g) const override { | ||
auto nodesList = g->internal().nodes(); | ||
size_t count = 0; | ||
for (auto opMatch : nodesList) { | ||
if (opMatch->info().op == nullptr) { | ||
continue; | ||
} | ||
size_t optype = opMatch->info().op->opTypeId(); | ||
if (optype != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { | ||
continue; | ||
} | ||
if (opMatch->successors().size() < 2) { | ||
continue; | ||
} | ||
auto input = opMatch->inputs()[0]->info().tensor; | ||
auto targets = opMatch->outputs()[0]->targets(); | ||
auto ReduceMeanOp = *targets.begin(); | ||
auto SubOp1 = *(std::next(targets.begin())); | ||
if (ReduceMeanOp == nullptr || SubOp1 == nullptr || | ||
ReduceMeanOp->info().op->opTypeId() != Reduce::typeId(refactor::kernel::ReduceType::Mean) || | ||
SubOp1->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Sub)) { | ||
continue; | ||
} | ||
auto reduceOp = dynamic_cast<Reduce *>(ReduceMeanOp->info().op.get()); | ||
auto axes = reduceOp->axes; | ||
if (axes.size() != 1) { | ||
continue; | ||
} | ||
auto keepDims = reduceOp->keepDims; | ||
if (ReduceMeanOp->successors().size() != 1 || *(ReduceMeanOp->outputs()[0]->targets().begin()) != SubOp1) { | ||
continue; | ||
} | ||
if (SubOp1->successors().size() != 2) { | ||
continue; | ||
} | ||
auto targets1 = SubOp1->outputs()[0]->targets(); | ||
auto PowOp = *targets1.begin(); | ||
auto DivOp = *(std::next(targets1.begin())); | ||
if (PowOp == nullptr || DivOp == nullptr || | ||
PowOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Pow) || | ||
DivOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Div)) { | ||
continue; | ||
} | ||
if (PowOp->successors().size() != 1 || DivOp->successors().size() != 1) { | ||
continue; | ||
} | ||
auto ReduceMeanOp1 = *(PowOp->outputs()[0]->targets().begin()); | ||
auto MulOp = *(DivOp->outputs()[0]->targets().begin()); | ||
if (ReduceMeanOp1 == nullptr || MulOp == nullptr || | ||
ReduceMeanOp1->info().op->opTypeId() != Reduce::typeId(refactor::kernel::ReduceType::Mean) || | ||
MulOp->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Mul)) { | ||
continue; | ||
} | ||
auto reduce1Op = dynamic_cast<Reduce *>(ReduceMeanOp1->info().op.get()); | ||
auto axes1 = reduce1Op->axes; | ||
if (axes != axes1) { | ||
continue; | ||
} | ||
if (auto keepDims1 = reduce1Op->keepDims; keepDims != keepDims1) { | ||
continue; | ||
} | ||
if (MulOp->successors().size() != 1 || ReduceMeanOp1->successors().size() != 1) { | ||
continue; | ||
} | ||
auto AddOrSqrtOp = *(ReduceMeanOp1->outputs()[0]->targets().begin()); | ||
auto AddOp2 = *(MulOp->outputs()[0]->targets().begin()); | ||
if (AddOrSqrtOp == nullptr || AddOp2 == nullptr || | ||
AddOp2->info().op->opTypeId() != SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { | ||
continue; | ||
} | ||
if (AddOrSqrtOp->successors().size() != 1) { | ||
continue; | ||
} | ||
float epsilon = 0.0; | ||
if (auto AddOp = AddOrSqrtOp; AddOp->info().op->opTypeId() == SimpleBinary::typeId(refactor::kernel::SimpleBinaryType::Add)) { | ||
auto SqrtOp = *(AddOp->outputs()[0]->targets().begin()); | ||
if (SqrtOp == nullptr || SqrtOp->info().op->opTypeId() != SimpleUnary::typeId(refactor::kernel::SimpleUnaryType::Sqrt)) { | ||
continue; | ||
} | ||
if (SqrtOp->successors().size() != 1 || *(SqrtOp->outputs()[0]->targets().begin()) != DivOp) { | ||
continue; | ||
} | ||
// start replace with LayernormOp | ||
if (auto t = AddOp->inputs()[1]->info().tensor->data; t) { | ||
auto dtype = AddOp->inputs()[1]->info().tensor->dataType; | ||
if (dtype == DataType::F32) { | ||
epsilon = *t->get<float>(); | ||
} else if (dtype == DataType::FP16) { | ||
epsilon = (*t->get<fp16_t>()).to_f32(); | ||
} else { | ||
epsilon = 0.0; | ||
} | ||
} | ||
} else if (auto SqrtOp = AddOrSqrtOp; SqrtOp->info().op->opTypeId() == SimpleUnary::typeId(refactor::kernel::SimpleUnaryType::Sqrt)) { | ||
if (*(SqrtOp->outputs()[0]->targets().begin()) != DivOp) { | ||
continue; | ||
} | ||
} else { | ||
continue; | ||
} | ||
|
||
int axis = axes[0]; | ||
auto layernormOp = g->internal().pushNode( | ||
{std::make_unique<LayerNormalization>(epsilon, axis), fmt::format("Layernorm_{}", count)}, | ||
{g->internal().shareEdge({Tensor::share(input->dataType, input->shape), fmt::format("Layernorm_{}_out", count)})}); | ||
layernormOp->connect(0, opMatch->outputs()[0]); | ||
layernormOp->connect(1, MulOp->inputs()[1]); | ||
layernormOp->connect(2, AddOp2->inputs()[1]); | ||
if (AddOp2->outputs()[0]->targets().size() == 0) {//global output | ||
g->internal().replaceOutput(AddOp2->outputs()[0], layernormOp->outputs()[0]); | ||
} else { | ||
for (auto node : AddOp2->outputs()[0]->targets()) { | ||
auto it = std::find(node->inputs().begin(), node->inputs().end(), AddOp2->outputs()[0]); | ||
node->reconnect(node->inputs()[std::distance(node->inputs().begin(), it)], layernormOp->outputs()[0]); | ||
} | ||
} | ||
count++; | ||
g->internal().cleanup(); | ||
} | ||
return true; | ||
}; | ||
}; | ||
|
||
|
||
}// namespace refactor::computation | ||
|
||
#endif// COMPUTATION_LAYERNORM_FUSE_H |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
#include "computation/operators/layernorm.h" | ||
|
||
namespace refactor::computation { | ||
using Op = LayerNormalization; | ||
|
||
auto Op::typeId() noexcept -> size_t { | ||
static uint8_t ID = 1; | ||
return reinterpret_cast<size_t>(&ID); | ||
} | ||
auto Op::opTypeId() const noexcept -> size_t { return typeId(); } | ||
auto Op::name() const noexcept -> std::string_view { return "LayerNormalization"; } | ||
auto Op::serialize() const noexcept -> std::string { | ||
union code { | ||
float f; | ||
int32_t i; | ||
}; | ||
return fmt::format(("{}({:e}={:#010x},{})"), | ||
name(), epsilon, | ||
code{epsilon}.i, axis); | ||
} | ||
|
||
}// namespace refactor::computation |
Oops, something went wrong.