Skip to content

Commit

Permalink
[BlockSparseArrays] Generalize matrix multiplication, dual the axes i…
Browse files Browse the repository at this point in the history
…n adjoint (#1480)

* [BlockSparseArrays] Generalize matrix multiplication, dual the axes in adjoint

* [NDTensors] Bump to v0.3.17
  • Loading branch information
mtfishman authored May 31, 2024
1 parent dbb7e7c commit e6cdf37
Show file tree
Hide file tree
Showing 10 changed files with 152 additions and 28 deletions.
2 changes: 1 addition & 1 deletion NDTensors/Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "NDTensors"
uuid = "23ae76d9-e61a-49c4-8f12-3f1a16adf9cf"
authors = ["Matthew Fishman <[email protected]>"]
version = "0.3.16"
version = "0.3.17"

[deps]
Accessors = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697"
Expand Down
Original file line number Diff line number Diff line change
@@ -1,15 +1,22 @@
module BlockSparseArraysGradedAxesExt
using BlockArrays: AbstractBlockVector, Block, BlockedUnitRange, blocks
using ..BlockSparseArrays:
BlockSparseArrays, AbstractBlockSparseArray, BlockSparseArray, block_merge
BlockSparseArrays,
AbstractBlockSparseArray,
AbstractBlockSparseMatrix,
BlockSparseArray,
BlockSparseMatrix,
block_merge
using ...GradedAxes:
GradedUnitRange,
OneToOne,
blockmergesortperm,
blocksortperm,
dual,
invblockperm,
nondual,
tensor_product
using LinearAlgebra: Adjoint, Transpose
using ...TensorAlgebra:
TensorAlgebra, FusionStyle, BlockReshapeFusion, SectorFusion, fusedims, splitdims

Expand Down Expand Up @@ -61,19 +68,59 @@ function Base.eachindex(a::AbstractBlockSparseArray)
return CartesianIndices(nondual.(axes(a)))
end

# TODO: Handle this through some kind of trait dispatch, maybe
# a `SymmetryStyle`-like trait to check if the block sparse
# matrix has graded axes.
function Base.axes(a::Adjoint{<:Any,<:AbstractBlockSparseMatrix})
return dual.(reverse(axes(a')))
end

# This is a temporary fix for `show` being broken for BlockSparseArrays
# with mixed dual and non-dual axes. This shouldn't be needed once
# GradedAxes is rewritten using BlockArrays v1.
# TODO: Delete this once GradedAxes is rewritten.
function Base.show(io::IO, mime::MIME"text/plain", a::BlockSparseArray; kwargs...)
a_nondual = BlockSparseArray(blocks(a), nondual.(axes(a)))
println(io, "typeof(axes) = ", typeof(axes(a)), "\n")
function blocksparse_show(
io::IO, mime::MIME"text/plain", a::AbstractArray, axes_a::Tuple; kwargs...
)
println(io, "typeof(axes) = ", typeof(axes_a), "\n")
println(
io,
"Warning: To temporarily circumvent a bug in printing BlockSparseArrays with mixtures of dual and non-dual axes, the types of the dual axes printed below might not be accurate. The types printed above this message are the correct ones.\n",
)
return invoke(
show, Tuple{IO,MIME"text/plain",AbstractArray}, io, mime, a_nondual; kwargs...
)
return invoke(show, Tuple{IO,MIME"text/plain",AbstractArray}, io, mime, a; kwargs...)
end

# This is a temporary fix for `show` being broken for BlockSparseArrays
# with mixed dual and non-dual axes. This shouldn't be needed once
# GradedAxes is rewritten using BlockArrays v1.
# TODO: Delete this once GradedAxes is rewritten.
function Base.show(io::IO, mime::MIME"text/plain", a::BlockSparseArray; kwargs...)
axes_a = axes(a)
a_nondual = BlockSparseArray(blocks(a), nondual.(axes(a)))
return blocksparse_show(io, mime, a_nondual, axes_a; kwargs...)
end

# This is a temporary fix for `show` being broken for BlockSparseArrays
# with mixed dual and non-dual axes. This shouldn't be needed once
# GradedAxes is rewritten using BlockArrays v1.
# TODO: Delete this once GradedAxes is rewritten.
function Base.show(
io::IO, mime::MIME"text/plain", a::Adjoint{<:Any,<:BlockSparseMatrix}; kwargs...
)
axes_a = axes(a)
a_nondual = BlockSparseArray(blocks(a'), dual.(nondual.(axes(a))))'
return blocksparse_show(io, mime, a_nondual, axes_a; kwargs...)
end

# This is a temporary fix for `show` being broken for BlockSparseArrays
# with mixed dual and non-dual axes. This shouldn't be needed once
# GradedAxes is rewritten using BlockArrays v1.
# TODO: Delete this once GradedAxes is rewritten.
function Base.show(
io::IO, mime::MIME"text/plain", a::Transpose{<:Any,<:BlockSparseMatrix}; kwargs...
)
axes_a = axes(a)
a_nondual = tranpose(BlockSparseArray(transpose(blocks(a)), nondual.(axes(a))))
return blocksparse_show(io, mime, a_nondual, axes_a; kwargs...)
end
end
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ using Compat: Returns
using Test: @test, @testset, @test_broken
using BlockArrays: Block, blocksize
using NDTensors.BlockSparseArrays: BlockSparseArray, block_nstored
using NDTensors.GradedAxes: GradedAxes, GradedUnitRange, dual, gradedrange
using NDTensors.GradedAxes: GradedAxes, GradedUnitRange, UnitRangeDual, dual, gradedrange
using NDTensors.LabelledNumbers: label
using NDTensors.SparseArrayInterface: nstored
using NDTensors.TensorAlgebra: fusedims, splitdims
Expand Down Expand Up @@ -87,8 +87,28 @@ const elts = (Float32, Float64, Complex{Float32}, Complex{Float64})
for I in eachindex(a)
@test a[I] == a_dense[I]
end

@test axes(a') == dual.(reverse(axes(a)))
# TODO: Define and use `isdual` here.
@test axes(a', 1) isa UnitRangeDual
@test !(axes(a', 2) isa UnitRangeDual)
@test isnothing(show(devnull, MIME("text/plain"), a))
end
@testset "Matrix multiplication" begin
r = gradedrange([U1(0) => 2, U1(1) => 3])
a1 = BlockSparseArray{elt}(dual(r), r)
a1[Block(1, 2)] = randn(elt, size(@view(a1[Block(1, 2)])))
a1[Block(2, 1)] = randn(elt, size(@view(a1[Block(2, 1)])))
a2 = BlockSparseArray{elt}(dual(r), r)
a2[Block(1, 2)] = randn(elt, size(@view(a2[Block(1, 2)])))
a2[Block(2, 1)] = randn(elt, size(@view(a2[Block(2, 1)])))
@test Array(a1 * a2) Array(a1) * Array(a2)
@test Array(a1' * a2') Array(a1') * Array(a2')

a2 = BlockSparseArray{elt}(r, dual(r))
a2[Block(1, 2)] = randn(elt, size(@view(a2[Block(1, 2)])))
a2[Block(2, 1)] = randn(elt, size(@view(a2[Block(2, 1)])))
@test Array(a1' * a2) Array(a1') * Array(a2)
@test Array(a1 * a2') Array(a1) * Array(a2')
end
end
end
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@ include("abstractblocksparsearray/abstractblocksparsevector.jl")
include("abstractblocksparsearray/view.jl")
include("abstractblocksparsearray/arraylayouts.jl")
include("abstractblocksparsearray/sparsearrayinterface.jl")
include("abstractblocksparsearray/linearalgebra.jl")
include("abstractblocksparsearray/broadcast.jl")
include("abstractblocksparsearray/map.jl")
include("blocksparsearray/defaults.jl")
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
using ArrayLayouts: ArrayLayouts, MemoryLayout, MulAdd
using BlockArrays: BlockLayout
using ..SparseArrayInterface: SparseLayout
using LinearAlgebra: mul!

function ArrayLayouts.MemoryLayout(arraytype::Type{<:BlockSparseArrayLike})
outer_layout = typeof(MemoryLayout(blockstype(arraytype)))
Expand Down

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,35 @@ function Base.similar(
return similar(arraytype, eltype(arraytype), axes)
end

# Needed by `BlockArrays` matrix multiplication interface
# TODO: This fixes an ambiguity error with `OffsetArrays.jl`, but
# is only appears to be needed in older versions of Julia like v1.6.
# Delete once we drop support for older versions of Julia.
function Base.similar(
arraytype::Type{<:BlockSparseArrayLike},
axes::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}},
)
return similar(arraytype, eltype(arraytype), axes)
end

# Needed by `BlockArrays` matrix multiplication interface
# Fixes ambiguity error with `BlockArrays.jl`.
function Base.similar(
arraytype::Type{<:BlockSparseArrayLike},
axes::Tuple{BlockedUnitRange,Vararg{AbstractUnitRange{Int}}},
)
return similar(arraytype, eltype(arraytype), axes)
end

# Needed by `BlockArrays` matrix multiplication interface
# Fixes ambiguity error with `BlockArrays.jl`.
function Base.similar(
arraytype::Type{<:BlockSparseArrayLike},
axes::Tuple{AbstractUnitRange{Int},BlockedUnitRange,Vararg{AbstractUnitRange{Int}}},
)
return similar(arraytype, eltype(arraytype), axes)
end

# Needed for disambiguation
function Base.similar(
arraytype::Type{<:BlockSparseArrayLike}, axes::Tuple{Vararg{BlockedUnitRange}}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,13 @@ using BlockArrays: BlockLayout
using ..SparseArrayInterface: SparseLayout
using LinearAlgebra: mul!

function blocksparse_muladd!(
α::Number, a1::AbstractMatrix, a2::AbstractMatrix, β::Number, a_dest::AbstractMatrix
)
mul!(blocks(a_dest), blocks(a1), blocks(a2), α, β)
return a_dest
end

function ArrayLayouts.materialize!(
m::MatMulMatAdd{
<:BlockLayout{<:SparseLayout},
Expand All @@ -11,6 +18,6 @@ function ArrayLayouts.materialize!(
},
)
α, a1, a2, β, a_dest = m.α, m.A, m.B, m.β, m.C
mul!(a_dest, a1, a2, α, β)
blocksparse_muladd!, a1, a2, β, a_dest)
return a_dest
end
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,15 @@ end
function Base.getindex(a::SparseTransposeBlocks, index::Vararg{Int,2})
return transpose(blocks(parent(a.array))[reverse(index)...])
end
# TODO: This should be handled by generic `AbstractSparseArray` code.
function Base.getindex(a::SparseTransposeBlocks, index::CartesianIndex{2})
return a[Tuple(index)...]
end
# TODO: Create a generic `parent_index` function to map an index
# a parent index.
function Base.isassigned(a::SparseTransposeBlocks, index::Vararg{Int,2})
return isassigned(blocks(parent(a.array)), reverse(index)...)
end
function SparseArrayInterface.stored_indices(a::SparseTransposeBlocks)
return map(reverse_index, stored_indices(blocks(parent(a.array))))
end
Expand All @@ -163,9 +172,22 @@ end
function Base.size(a::SparseAdjointBlocks)
return reverse(size(blocks(parent(a.array))))
end
# TODO: Create a generic `parent_index` function to map an index
# a parent index.
function Base.getindex(a::SparseAdjointBlocks, index::Vararg{Int,2})
return blocks(parent(a.array))[reverse(index)...]'
end
# TODO: Create a generic `parent_index` function to map an index
# a parent index.
# TODO: This should be handled by generic `AbstractSparseArray` code.
function Base.getindex(a::SparseAdjointBlocks, index::CartesianIndex{2})
return a[Tuple(index)...]
end
# TODO: Create a generic `parent_index` function to map an index
# a parent index.
function Base.isassigned(a::SparseAdjointBlocks, index::Vararg{Int,2})
return isassigned(blocks(parent(a.array)), reverse(index)...)
end
function SparseArrayInterface.stored_indices(a::SparseAdjointBlocks)
return map(reverse_index, stored_indices(blocks(parent(a.array))))
end
Expand Down Expand Up @@ -229,16 +251,17 @@ end
function Base.size(a::SparseSubArrayBlocks)
return length.(axes(a))
end
function Base.getindex(a::SparseSubArrayBlocks{<:Any,N}, I::CartesianIndex{N}) where {N}
return a[Tuple(I)...]
end
function Base.getindex(a::SparseSubArrayBlocks{<:Any,N}, I::Vararg{Int,N}) where {N}
parent_blocks = @view blocks(parent(a.array))[blockrange(a)...]
parent_block = parent_blocks[I...]
# TODO: Define this using `blockrange(a::AbstractArray, indices::Tuple{Vararg{AbstractUnitRange}})`.
block = Block(ntuple(i -> blockrange(a)[i][I[i]], ndims(a)))
return @view parent_block[blockindices(parent(a.array), block, a.array.indices)...]
end
# TODO: This should be handled by generic `AbstractSparseArray` code.
function Base.getindex(a::SparseSubArrayBlocks{<:Any,N}, I::CartesianIndex{N}) where {N}
return a[Tuple(I)...]
end
function Base.setindex!(a::SparseSubArrayBlocks{<:Any,N}, value, I::Vararg{Int,N}) where {N}
parent_blocks = view(blocks(parent(a.array)), axes(a)...)
return parent_blocks[I...][blockindices(parent(a.array), Block(I), a.array.indices)...] =
Expand Down
12 changes: 12 additions & 0 deletions NDTensors/src/lib/BlockSparseArrays/test/test_basics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,18 @@ include("TestBlockSparseArraysUtils.jl")
@test a_dest isa BlockSparseArray{elt}
@test block_nstored(a_dest) == 1
end
@testset "Matrix multiplication" begin
a1 = BlockSparseArray{elt}([2, 3], [2, 3])
a1[Block(1, 2)] = randn(elt, size(@view(a1[Block(1, 2)])))
a1[Block(2, 1)] = randn(elt, size(@view(a1[Block(2, 1)])))
a2 = BlockSparseArray{elt}([2, 3], [2, 3])
a2[Block(1, 2)] = randn(elt, size(@view(a2[Block(1, 2)])))
a2[Block(2, 1)] = randn(elt, size(@view(a2[Block(2, 1)])))
@test Array(a1 * a2) Array(a1) * Array(a2)
@test Array(a1' * a2) Array(a1') * Array(a2)
@test Array(a1 * a2') Array(a1) * Array(a2')
@test Array(a1' * a2') Array(a1') * Array(a2')
end
@testset "TensorAlgebra" begin
a1 = BlockSparseArray{elt}([2, 3], [2, 3])
a1[Block(1, 1)] = randn(elt, size(@view(a1[Block(1, 1)])))
Expand Down

2 comments on commit e6cdf37

@mtfishman
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator register subdir=NDTensors

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/108046

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a NDTensors-v0.3.17 -m "<description of version>" e6cdf37b6c87f2d788d73f3c72d1896af424e850
git push origin NDTensors-v0.3.17

Please sign in to comment.