Skip to content

PyTorch implementation of Approximate Derenderer, Extended Physics, and Tracking (ADEPT). http://physadept.csail.mit.edu/

Notifications You must be signed in to change notification settings

HaoliangWang/ADEPT-Model

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ADEPT-Model-Release

PyTorch implementation of Approximate Derenderer, Extended Physics, and Tracking (ADEPT).

Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations

Kevin Smith*, Lingjie Mei*, Shunyu Yao, Jiajun Wu, Elizabeth S. Spelke, Joshua B. Tenenbaum, Tomer Ullman (* indicates equal contribution)

NeurIPS 2019, CogSci 2020

Paper BibTeX Website

For data preparation, see our dataset generation repository for dataset generation.

Getting started

Prerequisites

  • Linux
  • Python3
  • PyTorch 1.1 with CUDA support
  • Other required python packages specified by requirements.txt.

Installation

  1. Clone this repository

    git clone https://github.com/JerryLingjieMei/ADEPT-Model-Release
    cd ADEPT-Model-Release

    and change CONTENT_FOLDER in utils.constants to the folder of this repository.

  2. Create a conda environment for ADEPT Model and install the requirements.

    conda create --n adept-model
    conda activate adept-model
    pip install -r requirements.txt
    conda install pytorch=1.1.0 cuda100 -c pytorch #Assume you use cuda version 10.0
  3. Set up Mask R-CNN implementation by Facebook Research, see here

  4. Change TRAIN_ROOT and HUMAN_ROOT in tools/paths_catalog.py to reflect the directory storing training videos and human test videos, and ANNOTATION_FOLDER in experiments/default_physics.yaml to the directory storing human test videos.

  5. Download pretrained weights for detection and derender by running

    . scripts/download_pretrained_model.sh
  6. (Optional) If you have multiple machines, you may change get_host_id in utils/misc.py to reflect the id of your machine. With that in hand, you may speed up physical reasoning process by using --stride N arguments, where you have N machines with consecutive ids.

Experiments

  1. Collect COCO annotations for the training set, and the human test set:

    # Fill in the TRAIN_SET_FOLDER with the training set folder
    python3 dataset/makers/make_coco.py -i ${TRAIN_SET_FOLDER} -o data/ann.json
    # Fill in the HUMAN_TEST_SET_FOLDER with the human set folder
    python3 dataset/makers/make_coco.py -i ${HUMAN_TEST_SET_FOLDER} -o data/human_ann.json

    Then train the detection part of perception on the training set and test on training set and human test set,

    # Training and testing with multiple GPUs
    export CUDA_VISIBLE_DEVICES=0,1,2,3
    export NGPUS=4
    python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/detection_train_net.py --config_file experiments/default_detection.yaml
    python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/detection_test_net.py --config_file experiments/default_detection.yaml
    # Training and testing on a single GPU
    python tools/detection_train_net.py --config_file experiments/default_detection.yaml
    python tools/detection_test_net.py --config_file experiments/default_detection.yaml
  2. Collect Object Proposal annotations for the training set and train the approximate derenderer part of the perception.

    # Fill in the TRAIN_SET_FOLDER with the training set folder
    python3 dataset/makers/make_proposal.py -i ${TRAIN_SET_FOLDER} -o data/annotated_ann.json -s output/default_detection/inference/physics/segm.json
    python3 tools/train_net.py --config_file experiments/default_derender.yaml

    Collect Object Proposal annotations for the human test set and test the approximate derender.

    # Fill in the HUMAN_TEST_SET_FOLDER with the human set folder
    python3 dataset/makers/make_proposal.py -i ${HUMAN_TEST_SET_FOLDER} -o data/annotated_human_ann.json -s output/default_detection/inference/physics_human/segm.json
    python3 tools/test_net.py --config_file experiments/default_derender.yaml
  3. Evaluate the physical reasoning result on the inferred objects proposals of human test set:

    # Single machine
    python3 tools/run_physics.py --config_file experiments/default_physics.yaml
    # Multiple (e.g. 8) machines
    python3 tools/run_physics.py --config_file experiments/default_physics.yaml --stride 8 #On each machine

About

PyTorch implementation of Approximate Derenderer, Extended Physics, and Tracking (ADEPT). http://physadept.csail.mit.edu/

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.6%
  • Python 2.3%
  • Shell 0.1%