Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Grid Sampling for 3D images. #627

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 73 additions & 2 deletions ext/NNlibCUDAExt/sampling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
@inbounds CUDA.@atomic dx[ix, iy, c, n] += value
end

function grid_sample_kernel!(n_elem, output, input, grid, padding_mode)
function grid_sample_kernel!(n_elem, output::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{V, 4}, padding_mode) where {T,V}
index = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
if index < n_elem
iW, iH, iC, _ = size(input)
Expand All @@ -16,7 +16,7 @@ function grid_sample_kernel!(n_elem, output, input, grid, padding_mode)
nothing
end

function ∇grid_sample_kernel!(n_elem, dx, dgrid, Δ, input, grid, padding_mode)
function ∇grid_sample_kernel!(n_elem, dx::AbstractArray{T, 4}, dgrid::AbstractArray{V, 4}, Δ::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{V, 4}, padding_mode) where {T,V}
index = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
if index < n_elem
iW, iH, iC, _ = size(input)
Expand Down Expand Up @@ -59,3 +59,74 @@ function NNlib.∇grid_sample(Δ::CuArray{T, 4}, x::CuArray{T, 4}, grid::CuArray
kernel(n_elem, dx, dgrid, Δ, x, grid, pad; threads=threads, blocks=blocks)
dx, dgrid
end


@inline function NNlib._safe_add!(dx::CuDeviceArray{T, 5}, value, ix, iy, iz, c, n) where T
@inbounds CUDA.@atomic dx[ix, iy, iz, c, n] += value
end

function grid_sample_kernel!(n_elem, output::AbstractArray{T, 5}, input::AbstractArray{T, 5}, grid::AbstractArray{V, 5}, padding_mode) where {T,V}
index = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
if index < n_elem
iW, iH,iD, iC, _ = size(input)
_, gW, gH, gD, _ = size(grid)

w = index % gW + 1
h = (index ÷ gW) % gH + 1
d = (index ÷ (gW * gH)) % gD + 1
n = index ÷ (gW * gH * gD) + 1
# n = index ÷ (gW * gH) + 1
# d = (index ÷ (gW * gH * n)) + 1

NNlib._grid_sample_kernel!(output, input, grid, padding_mode, w, h, d, n, iW, iH, iD, iC)
end
nothing
end

function ∇grid_sample_kernel!(n_elem, dx::AbstractArray{T, 5}, dgrid::AbstractArray{V, 5}, Δ::AbstractArray{T, 5}, input::AbstractArray{T, 5}, grid::AbstractArray{V, 5}, padding_mode) where {T,V}
index = (threadIdx().x - 1) + (blockIdx().x - 1) * blockDim().x
if index < n_elem
iW, iH, iC, _ = size(input)
_, gW, gH, gD, _ = size(grid)

w = index % gW + 1
h = (index ÷ gW) % gH + 1
d = (index ÷ (gW * gH)) % gD + 1
n = index ÷ (gW * gH * gD) + 1
# n = index ÷ (gW * gH) + 1
# d = (index ÷ (gW * gH * n)) + 1

NNlib._∇grid_sample_kernel!(dx, dgrid, Δ, input, grid, padding_mode, w, h, d, n, iW, iH, iD, iC)
end
nothing
end

function NNlib.grid_sample(x::CuArray{T, 5}, grid::CuArray{V, 5}; padding_mode = :zeros) where {T, V}
pad = Val(padding_mode)
_, _, _, xC, xN = size(x)
_, gW, gH, gD, _ = size(grid)
n_elem = gW * gH * gD * xN
y = similar(x, T, (gW, gH, gD, xC, xN))

kernel = @cuda launch=false grid_sample_kernel!(n_elem, y, x, grid, pad)
config = launch_configuration(kernel.fun; max_threads=256)
threads = min(n_elem, config.threads)
blocks = cld(n_elem, threads)
kernel(n_elem, y, x, grid, pad; threads=threads, blocks=blocks)
y
end

function NNlib.∇grid_sample(Δ::CuArray{T, 5}, x::CuArray{T, 5}, grid::CuArray{V, 5}; padding_mode = :zeros) where {T, V}
pad = Val(padding_mode)
xN = size(x, 5)
_, gW, gH, gD, _ = size(grid)
n_elem = gW * gH * gD * xN
dx, dgrid = CUDA.zeros(T, size(x)), similar(grid)

kernel = @cuda launch=false ∇grid_sample_kernel!(n_elem, dx, dgrid, Δ, x, grid, pad)
config = launch_configuration(kernel.fun; max_threads=256)
threads = min(n_elem, config.threads)
blocks = cld(n_elem, threads)
kernel(n_elem, dx, dgrid, Δ, x, grid, pad; threads=threads, blocks=blocks)
dx, dgrid
end
Loading
Loading