Skip to content

Commit

Permalink
deploy: df3ee93
Browse files Browse the repository at this point in the history
  • Loading branch information
gabhijith committed Jan 14, 2025
1 parent 1bea590 commit 2fe4298
Show file tree
Hide file tree
Showing 13 changed files with 243 additions and 93 deletions.
16 changes: 16 additions & 0 deletions _sources/notebooks/1-datasets-uproot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,22 @@
"Authors: Javier Duarte, Raghav Kansal\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run this cell if you are using google colab"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install uproot"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
17 changes: 17 additions & 0 deletions _sources/notebooks/2-boosted-decision-tree.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,23 @@
"Authors: Raghav Kansal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run this cell if you are using google colab"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install uproot\n",
"!pip install xgboost"
]
},
{
"cell_type": "markdown",
"metadata": {
Expand Down
17 changes: 17 additions & 0 deletions _sources/notebooks/3.1-dense-keras.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,23 @@
"Authors: Javier Duarte, Raghav Kansal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run this cell if you are using google colab"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install uproot\n",
"!pip install xgboost"
]
},
{
"cell_type": "markdown",
"metadata": {
Expand Down
17 changes: 17 additions & 0 deletions _sources/notebooks/3.2-dense-pytorch.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,23 @@
"Authors: Javier Duarte, Tyler Mitchell, Raghav Kansal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Run this cell if you are using google colab"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install uproot\n",
"!pip install xgboost"
]
},
{
"cell_type": "markdown",
"metadata": {
Expand Down
21 changes: 19 additions & 2 deletions _sources/notebooks/3.3-dense-bayesian-optimization.ipynb

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions _sources/notebooks/8-SetTransformer-PointCloud.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
},
"source": [
"# Jet Tagging with Permutation Invariance\n",
"Author: Abhijith Gandrakota, Jennifer Ngadiuba\n",
"\n",
"In this notebook we will see an implementation of the Transformer architecture for sets applied to the jet tagging task. For *sets* it is meant here a point cloud, i.e. a set of nodes without edges. We will instead use Multi-Head Attention to learn which nodes (or particles) have strong pair-wise interaction.\n",
"\n",
Expand Down
36 changes: 24 additions & 12 deletions notebooks/1-datasets-uproot.html
Original file line number Diff line number Diff line change
Expand Up @@ -426,10 +426,11 @@ <h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-datasets-from-root-files-using-uproot">1.1. Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-root-files">1.2. Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convert-tree-to-pandas-dataframes">1.3. Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#plotting-in-matplotlib">1.4. Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#run-this-cell-if-you-are-using-google-colab">1.1. Run this cell if you are using google colab</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-datasets-from-root-files-using-uproot">1.2. Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-root-files">1.3. Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convert-tree-to-pandas-dataframes">1.4. Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#plotting-in-matplotlib">1.5. Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code></a></li>
</ul>
</nav>
</div>
Expand All @@ -444,8 +445,18 @@ <h2> Contents </h2>
<section class="tex2jax_ignore mathjax_ignore" id="loading-datasets">
<h1><span class="section-number">1. </span>Loading Datasets<a class="headerlink" href="#loading-datasets" title="Link to this heading">#</a></h1>
<p>Authors: Javier Duarte, Raghav Kansal</p>
<section id="run-this-cell-if-you-are-using-google-colab">
<h2><span class="section-number">1.1. </span>Run this cell if you are using google colab<a class="headerlink" href="#run-this-cell-if-you-are-using-google-colab" title="Link to this heading">#</a></h2>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="o">!</span>pip<span class="w"> </span>install<span class="w"> </span>uproot
</pre></div>
</div>
</div>
</div>
</section>
<section id="load-datasets-from-root-files-using-uproot">
<h2><span class="section-number">1.1. </span>Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code><a class="headerlink" href="#load-datasets-from-root-files-using-uproot" title="Link to this heading">#</a></h2>
<h2><span class="section-number">1.2. </span>Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code><a class="headerlink" href="#load-datasets-from-root-files-using-uproot" title="Link to this heading">#</a></h2>
<p>Here we load the <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> datasets in python using <code class="docutils literal notranslate"><span class="pre">uproot</span></code> (see: <a class="github reference external" href="https://github.com/scikit-hep/uproot">scikit-hep/uproot</a>). For more information about how to use uproot, see the <a class="reference external" href="https://indico.cern.ch/event/1297663/"><code class="docutils literal notranslate"><span class="pre">Uproot</span> <span class="pre">and</span> <span class="pre">Awkward</span> <span class="pre">Array</span> <span class="pre">for</span> <span class="pre">columnar</span> <span class="pre">analysis</span> <span class="pre">HATS&#64;LPC</span> <span class="pre">2023</span></code></a> tutorial.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
Expand All @@ -467,7 +478,7 @@ <h2><span class="section-number">1.1. </span>Load datasets from <code class="doc
</div>
</section>
<section id="load-root-files">
<h2><span class="section-number">1.2. </span>Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files<a class="headerlink" href="#load-root-files" title="Link to this heading">#</a></h2>
<h2><span class="section-number">1.3. </span>Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files<a class="headerlink" href="#load-root-files" title="Link to this heading">#</a></h2>
<p>Here we simply open two <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code> and display the branch content of one of the trees.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
Expand All @@ -491,7 +502,7 @@ <h2><span class="section-number">1.2. </span>Load <code class="docutils literal
</div>
</section>
<section id="convert-tree-to-pandas-dataframes">
<h2><span class="section-number">1.3. </span>Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames<a class="headerlink" href="#convert-tree-to-pandas-dataframes" title="Link to this heading">#</a></h2>
<h2><span class="section-number">1.4. </span>Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames<a class="headerlink" href="#convert-tree-to-pandas-dataframes" title="Link to this heading">#</a></h2>
<p>In my opinion, <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames are a more convenient/flexible data container in python: <a class="reference external" href="https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html">https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html</a>.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
Expand Down Expand Up @@ -528,7 +539,7 @@ <h2><span class="section-number">1.3. </span>Convert tree to <code class="docuti
</div>
</section>
<section id="plotting-in-matplotlib">
<h2><span class="section-number">1.4. </span>Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code><a class="headerlink" href="#plotting-in-matplotlib" title="Link to this heading">#</a></h2>
<h2><span class="section-number">1.5. </span>Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code><a class="headerlink" href="#plotting-in-matplotlib" title="Link to this heading">#</a></h2>
<p>Finally, it is always useful to visualize the dataset before using machine learning. Here, we plot some key features in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code> with <code class="docutils literal notranslate"><span class="pre">uproot</span></code></p>
<div class="cell docutils container">
<div class="cell_input docutils container">
Expand Down Expand Up @@ -627,10 +638,11 @@ <h2><span class="section-number">1.4. </span>Plotting in <code class="docutils l
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-datasets-from-root-files-using-uproot">1.1. Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-root-files">1.2. Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convert-tree-to-pandas-dataframes">1.3. Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#plotting-in-matplotlib">1.4. Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#run-this-cell-if-you-are-using-google-colab">1.1. Run this cell if you are using google colab</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-datasets-from-root-files-using-uproot">1.2. Load datasets from <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files using <code class="docutils literal notranslate"><span class="pre">uproot</span></code></a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#load-root-files">1.3. Load <code class="docutils literal notranslate"><span class="pre">ROOT</span></code> files</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convert-tree-to-pandas-dataframes">1.4. Convert tree to <code class="docutils literal notranslate"><span class="pre">pandas</span></code> DataFrames</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#plotting-in-matplotlib">1.5. Plotting in <code class="docutils literal notranslate"><span class="pre">matplotlib</span></code></a></li>
</ul>
</nav></div>

Expand Down
Loading

0 comments on commit 2fe4298

Please sign in to comment.