-
Notifications
You must be signed in to change notification settings - Fork 198
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added CI to test secondary ion emission in RZ. #5576
Open
oshapoval
wants to merge
1
commit into
ECP-WarpX:development
Choose a base branch
from
oshapoval:secondary_emission_callback
base: development
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Add tests (alphabetical order) ############################################## | ||
# | ||
|
||
if(WarpX_EB) | ||
add_warpx_test( | ||
test_rz_secondary_ion_emission_picmi # name | ||
RZ # dims | ||
1 # nprocs | ||
inputs_test_rz_secondary_ion_emission_picmi.py # inputs | ||
"analysis.py diags/diag1/" # analysis | ||
"analysis_default_regression.py --path diags/diag1/" # checksum | ||
OFF # dependency | ||
) | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
#!/usr/bin/env python | ||
""" | ||
This script tests the last coordinates of the emitted secondary electrons. | ||
The EB sphere is centered on O and has a radius of 0.2. | ||
The proton is initially at: (0,0,-0.25) and moves with a velocity: | ||
(0.1e6,0,1.5e6) with a time step of dt = 0.000000015. | ||
The simulation uses a fixed random seed (np.random.seed(10025015)) | ||
to ensure the emission of secodnary electrons. | ||
An input file inputs_test_rz_secondary_ion_emission_picmi.py is used. | ||
""" | ||
|
||
import sys | ||
|
||
import numpy as np | ||
import yt | ||
from openpmd_viewer import OpenPMDTimeSeries | ||
|
||
yt.funcs.mylog.setLevel(0) | ||
|
||
# Open plotfile specified in command line | ||
filename = sys.argv[1] | ||
ts = OpenPMDTimeSeries(filename) | ||
|
||
it = ts.iterations | ||
x, y, z = ts.get_particle(["x", "y", "z"], species="electrons", iteration=it[-1]) | ||
print("x", x) | ||
print("y", y) | ||
print("z", z) | ||
# Analytical results calculated | ||
x_analytic = [0.004028, 0.003193] | ||
y_analytic = [-0.0001518, -0.0011041] | ||
z_analytic = [-0.19967, -0.19926] | ||
|
||
N_sec_e = np.size(z) # number of the secondary electrons | ||
|
||
assert N_sec_e == 2, ( | ||
"Test did not pass: for this set up we expect 2 secondary electrons emitted" | ||
) | ||
|
||
tolerance = 1e-3 | ||
|
||
for i in range(0, N_sec_e): | ||
print("\n") | ||
print(f"Electron # {i}:") | ||
print("NUMERICAL coordinates of the emitted electrons:") | ||
print("x=%5.5f, y=%5.5f, z=%5.5f" % (x[i], y[i], z[i])) | ||
print("\n") | ||
print("ANALYTICAL coordinates of the point of contact:") | ||
print("x=%5.5f, y=%5.5f, z=%5.5f" % (x_analytic[i], y_analytic[i], z_analytic[i])) | ||
|
||
diff_x = np.abs((x[i] - x_analytic[i]) / x_analytic[i]) | ||
diff_y = np.abs((y[i] - y_analytic[i]) / y_analytic[i]) | ||
diff_z = np.abs((z[i] - z_analytic[i]) / z_analytic[i]) | ||
|
||
print("\n") | ||
print("percentage error for x = %5.4f %%" % (diff_x * 100)) | ||
print("percentage error for y = %5.4f %%" % (diff_y * 100)) | ||
print("percentage error for z = %5.4f %%" % (diff_z * 100)) | ||
|
||
assert (diff_x < tolerance) and (diff_y < tolerance) and (diff_z < tolerance), ( | ||
"Test particle_boundary_interaction did not pass" | ||
) |
1 change: 1 addition & 0 deletions
1
Examples/Tests/secondary_ion_emission/analysis_default_regression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
../../analysis_default_regression.py |
255 changes: 255 additions & 0 deletions
255
Examples/Tests/secondary_ion_emission/inputs_test_rz_secondary_ion_emission_picmi.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
#!/usr/bin/env python3 | ||
# --- Input file for secondary-ion emission testing in RZ via callback function. | ||
import numpy as np | ||
from scipy.constants import e, elementary_charge, m_e, proton_mass | ||
|
||
from pywarpx import callbacks, particle_containers, picmi | ||
|
||
########################## | ||
# numerics parameters | ||
########################## | ||
|
||
dt = 0.000000015 | ||
|
||
# --- Nb time steps | ||
Te = 0.0259 # in eV | ||
dist_th = np.sqrt(Te * elementary_charge / m_e) | ||
|
||
max_steps = 3 | ||
diagnostic_interval = 1 | ||
|
||
# --- grid | ||
nr = 64 | ||
nz = 64 | ||
|
||
rmin = 0.0 | ||
rmax = 2 | ||
zmin = -2 | ||
zmax = 2 | ||
delta_H = 0.4 | ||
E_HMax = 250 | ||
|
||
np.random.seed(10025015) | ||
########################## | ||
# numerics components | ||
########################## | ||
|
||
grid = picmi.CylindricalGrid( | ||
number_of_cells=[nr, nz], | ||
n_azimuthal_modes=1, | ||
lower_bound=[rmin, zmin], | ||
upper_bound=[rmax, zmax], | ||
lower_boundary_conditions=["none", "dirichlet"], | ||
upper_boundary_conditions=["dirichlet", "dirichlet"], | ||
lower_boundary_conditions_particles=["none", "reflecting"], | ||
upper_boundary_conditions_particles=["absorbing", "reflecting"], | ||
) | ||
|
||
solver = picmi.ElectrostaticSolver( | ||
grid=grid, method="Multigrid", warpx_absolute_tolerance=1e-7 | ||
) | ||
|
||
embedded_boundary = picmi.EmbeddedBoundary( | ||
implicit_function="-(x**2+y**2+z**2-radius**2)", radius=0.2 | ||
) | ||
|
||
########################## | ||
# physics components | ||
########################## | ||
|
||
i_dist = picmi.ParticleListDistribution( | ||
x=0.0, y=0.0, z=-0.25, ux=0.1e6, uy=0.0, uz=1.50e6, weight=1 | ||
) | ||
electrons = picmi.Species( | ||
particle_type="electron", # Specify the particle type | ||
name="electrons", # Name of the species | ||
) | ||
|
||
ions = picmi.Species( | ||
name="ions", | ||
mass=proton_mass, | ||
charge=e, | ||
initial_distribution=i_dist, | ||
warpx_save_particles_at_eb=1, | ||
) | ||
|
||
########################## | ||
# diagnostics | ||
########################## | ||
|
||
field_diag = picmi.FieldDiagnostic( | ||
name="diag1", | ||
grid=grid, | ||
period=diagnostic_interval, | ||
data_list=["Er", "Ez", "phi", "rho"], # , "rho_electrons"], | ||
warpx_format="openpmd", | ||
) | ||
|
||
part_diag = picmi.ParticleDiagnostic( | ||
name="diag1", | ||
period=diagnostic_interval, | ||
species=[ions, electrons], | ||
warpx_format="openpmd", | ||
) | ||
|
||
########################## | ||
# simulation setup | ||
########################## | ||
# num_procs = [1, 1] | ||
# warpx_numprocs=num_procs, | ||
sim = picmi.Simulation( | ||
solver=solver, | ||
time_step_size=dt, | ||
max_steps=max_steps, | ||
warpx_embedded_boundary=embedded_boundary, | ||
warpx_amrex_the_arena_is_managed=1, | ||
) | ||
|
||
sim.add_species( | ||
electrons, | ||
layout=picmi.GriddedLayout(n_macroparticle_per_cell=[0, 0, 0], grid=grid), | ||
) | ||
|
||
sim.add_species( | ||
ions, | ||
layout=picmi.GriddedLayout(n_macroparticle_per_cell=[10, 1, 1], grid=grid), | ||
) | ||
|
||
sim.add_diagnostic(part_diag) | ||
sim.add_diagnostic(field_diag) | ||
|
||
sim.initialize_inputs() | ||
sim.initialize_warpx() | ||
|
||
########################## | ||
# python particle data access | ||
########################## | ||
|
||
|
||
def concat(list_of_arrays): | ||
if len(list_of_arrays) == 0: | ||
# Return a 1d array of size 0 | ||
return np.empty(0) | ||
else: | ||
return np.concatenate(list_of_arrays) | ||
|
||
|
||
def sigma_nascap(energy_kEv, delta_H, E_HMax): | ||
""" | ||
Compute sigma_nascap for each element in the energy array using a loop. | ||
|
||
Parameters: | ||
- energy: ndarray or list, energy values in KeV | ||
- delta_H: float, parameter for the formula | ||
- E_HMax: float, parameter for the formula in KeV | ||
|
||
Returns: | ||
- numpy array, computed probability sigma_nascap | ||
""" | ||
sigma_nascap = np.array([]) | ||
# Loop through each energy value | ||
for energy in energy_kEv: | ||
if energy > 0.0: | ||
sigma = ( | ||
delta_H | ||
* (E_HMax + 1.0) | ||
/ (E_HMax * 1.0 + energy) | ||
* np.sqrt(energy / 1.0) | ||
) | ||
else: | ||
sigma = 0.0 | ||
sigma_nascap = np.append(sigma_nascap, sigma) | ||
return sigma_nascap | ||
|
||
|
||
def secondary_emission(): | ||
buffer = particle_containers.ParticleBoundaryBufferWrapper() # boundary buffer | ||
# STEP 1: extract the different parameters of the boundary buffer (normal, time, position) | ||
lev = 0 # level 0 (no mesh refinement here) | ||
n = buffer.get_particle_boundary_buffer_size("ions", "eb") | ||
elect_pc = particle_containers.ParticleContainerWrapper("electrons") | ||
|
||
if n != 0: | ||
r = concat(buffer.get_particle_boundary_buffer("ions", "eb", "x", lev)) | ||
theta = concat(buffer.get_particle_boundary_buffer("ions", "eb", "theta", lev)) | ||
z = concat(buffer.get_particle_boundary_buffer("ions", "eb", "z", lev)) | ||
x = r * np.cos(theta) # from RZ coordinates to 3D coordinates | ||
y = r * np.sin(theta) | ||
ux = concat(buffer.get_particle_boundary_buffer("ions", "eb", "ux", lev)) | ||
uy = concat(buffer.get_particle_boundary_buffer("ions", "eb", "uy", lev)) | ||
uz = concat(buffer.get_particle_boundary_buffer("ions", "eb", "uz", lev)) | ||
w = concat(buffer.get_particle_boundary_buffer("ions", "eb", "w", lev)) | ||
nx = concat(buffer.get_particle_boundary_buffer("ions", "eb", "nx", lev)) | ||
ny = concat(buffer.get_particle_boundary_buffer("ions", "eb", "ny", lev)) | ||
nz = concat(buffer.get_particle_boundary_buffer("ions", "eb", "nz", lev)) | ||
delta_t = concat( | ||
buffer.get_particle_boundary_buffer("ions", "eb", "deltaTimeScraped", lev) | ||
) | ||
energy_ions = 0.5 * proton_mass * w * (ux**2 + uy**2 + uz**2) | ||
energy_ions_in_kEv = energy_ions / (1.602176634e-19 * 1000) | ||
sigma_nascap_ions = sigma_nascap(energy_ions_in_kEv, delta_H, E_HMax) | ||
# Loop over all ions in the EB buffer | ||
for i in range(0, n): | ||
sigma = sigma_nascap_ions[i] | ||
sigma_int = int(sigma) | ||
rn = np.random.uniform(sigma_int, sigma_int + 1 + np.finfo(float).eps) | ||
if rn < sigma: | ||
Ne_sec = ( | ||
sigma_int + 1 | ||
) # number of the secondary electrons to be emitted | ||
for j in [0, Ne_sec - 1]: | ||
xe = np.array([]) | ||
ye = np.array([]) | ||
ze = np.array([]) | ||
we = np.array([]) | ||
delta_te = np.array([]) | ||
uxe = np.array([]) | ||
uye = np.array([]) | ||
uze = np.array([]) | ||
|
||
# Random thermal momenta distribution | ||
ux_th = np.random.normal(0, dist_th) | ||
uy_th = np.random.normal(0, dist_th) | ||
uz_th = np.random.normal(0, dist_th) | ||
|
||
un_th = nx[i] * ux_th + ny[i] * uy_th + nz[i] * uz_th | ||
|
||
if un_th < 0: | ||
ux_th_reflect = ( | ||
-2 * un_th * nx[i] + ux_th | ||
) # for a "mirror reflection" u(sym)=-2(u.n)n+u | ||
uy_th_reflect = -2 * un_th * ny[i] + uy_th | ||
uz_th_reflect = -2 * un_th * nz[i] + uz_th | ||
|
||
uxe = np.append(uxe, ux_th_reflect) | ||
uye = np.append(uye, uy_th_reflect) | ||
uze = np.append(uze, uz_th_reflect) | ||
else: | ||
uxe = np.append(uxe, ux_th) | ||
uye = np.append(uye, uy_th) | ||
uze = np.append(uze, uz_th) | ||
|
||
xe = np.append(xe, x[i]) | ||
ye = np.append(ye, y[i]) | ||
ze = np.append(ze, z[i]) | ||
we = np.append(we, w[i]) | ||
delta_te = np.append(delta_te, delta_t[i]) | ||
|
||
elect_pc.add_particles( | ||
x=xe + (dt - delta_te) * uxe, | ||
y=ye + (dt - delta_te) * uye, | ||
z=ze + (dt - delta_te) * uze, | ||
ux=uxe, | ||
uy=uye, | ||
uz=uze, | ||
w=we, | ||
) | ||
buffer.clear_buffer() # reinitialise the boundary buffer | ||
|
||
|
||
# using the new particle container modified at the last step | ||
callbacks.installafterstep(secondary_emission) | ||
########################## | ||
# simulation run | ||
########################## | ||
sim.step(max_steps) # the whole process is done "max_steps" times |
26 changes: 26 additions & 0 deletions
26
Regression/Checksum/benchmarks_json/test_rz_secondary_ion_emission_picmi.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
{ | ||
"electrons": { | ||
"particle_momentum_x": 6.863524723051401e-26, | ||
"particle_momentum_y": 1.0324224192517369e-25, | ||
"particle_momentum_z": 5.621885683115495e-26, | ||
"particle_position_x": 0.0072217326490580675, | ||
"particle_position_y": 0.001255871169011761, | ||
"particle_position_z": 0.39892796754417836, | ||
"particle_weight": 2.0 | ||
}, | ||
"ions": { | ||
"particle_momentum_x": 0.0, | ||
"particle_momentum_y": 0.0, | ||
"particle_momentum_z": 0.0, | ||
"particle_position_x": 0.0, | ||
"particle_position_y": 0.0, | ||
"particle_position_z": 0.0, | ||
"particle_weight": 0.0 | ||
}, | ||
"lev=0": { | ||
"Er": 3.996898574068735e-08, | ||
"Ez": 3.77948124311196e-08, | ||
"phi": 2.359076749421693e-08, | ||
"rho": 4.6171309216540875e-15 | ||
} | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Check failure
Code scanning / CodeQL
Suspicious unused loop iteration variable Error