This repository contains the replication scripts for:
- McCabe, S., Ferrari, D., Green J., Lazer, D., Esterling, K. (2024) Twitter Deplatforming: Limiting Misinformation after the January 6 Insurrection. Nature (forthcoming)
Bibtex citation:
@article{mccabe2024twitter,
author = {Stefan D. McCabe, Diogo Ferrari, Jon Green, David M.J. Lazer, Kevin M. Esterling},
title = {Twitter Deplatforming: Limiting Misinformation after the January 6 Insurrection},
year={2024},
journal = {Nature},
volume = {forthcoming},
issue = {},
doi = {},
url = {},
}
The files include:
- The scripts used to generate the aggregated data from the raw user-day data.
- The scripts used to replicate the analyses and create the tables and figures in the manuscript.
- Aggregated data sets used in the analyses.
The analyses in the manuscript were produced using:
- Intel® Core™ i7-10610U × 8
- 48 GiB RAM
Original settings used to produce the manuscript analyses:
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 23.10
platform x86_64-pc-linux-gnu
arch x86_64
os linux-gnu
R version 4.3.1 (2023-06-16)
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/Los_Angeles
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.9.2 forcats_1.0.0 dplyr_1.1.4 purrr_1.0.2 readr_2.1.4
[6] tidyr_1.3.0 tibble_3.2.1 tidyverse_2.0.0 writexl_1.4.2 stringr_1.5.1
[11] rdrobust_2.2 modelsummary_1.4.0 patchwork_1.2.0 lmtest_0.9-40 zoo_1.8-12
[16] furrr_0.3.1 future_1.32.0 ComplexUpset_1.3.3 sandwich_3.0-2 gridExtra_2.3
[21] ggh4x_0.2.5 ggrepel_0.9.3 scales_1.2.1 psych_2.3.9 did_2.1.2
[26] magrittr_2.0.3 glue_1.6.2 ggdark_0.2.1 gtsummary_1.7.1 ggplot2_3.4.2
[31] RColorBrewer_1.1-3
loaded via a namespace (and not attached):
[1] splines_4.3.1 later_1.3.1 datawizard_0.9.0 lifecycle_1.0.4
[5] rstatix_0.7.2 rprojroot_2.0.3 globals_0.16.2 lattice_0.21-8
[9] vroom_1.6.5 MASS_7.3-60 insight_0.19.7 backports_1.4.1
[13] rmarkdown_2.21 httpuv_1.6.11 askpass_1.1 multcomp_1.4-23
[17] abind_1.4-5 rvest_1.0.3 TH.data_1.1-2 gdtools_0.3.3
[21] listenv_0.9.0 crul_1.3 performance_0.10.8 parallelly_1.35.0
[25] svglite_2.1.1 codetools_0.2-19 DT_0.27 xml2_1.3.4
[29] tidyselect_1.2.0 httpcode_0.3.0 farver_2.1.1 effectsize_0.8.6
[33] webshot_0.5.4 broom.helpers_1.13.0 jsonlite_1.8.4 ellipsis_0.3.2
[37] survival_3.5-5 emmeans_1.8.6 systemfonts_1.0.4 tools_4.3.1
[41] Rcpp_1.0.10 mnormt_2.1.1 xfun_0.39 mgcv_1.8-42
[45] withr_2.5.2 fastmap_1.1.1 fansi_1.0.5 openssl_2.0.6
[49] digest_0.6.31 timechange_0.2.0 R6_2.5.1 mime_0.12
[53] estimability_1.4.1 textshaping_0.3.6 colorspace_2.1-0 utf8_1.2.4
[57] generics_0.1.3 fontLiberation_0.1.0 data.table_1.14.8 httr_1.4.6
[61] htmlwidgets_1.6.2 parameters_0.21.3 pkgconfig_2.0.3 gtable_0.3.3
[65] htmltools_0.5.5 fontBitstreamVera_0.1.1 carData_3.0-5 kableExtra_1.3.4
[69] BMisc_1.4.5 knitr_1.42 rstudioapi_0.14 tzdb_0.4.0
[73] coda_0.19-4 checkmate_2.2.0 nlme_3.1-162 curl_5.0.0
[77] parallel_4.3.1 pillar_1.9.0 grid_4.3.1 vctrs_0.6.5
[81] promises_1.2.0.1 ggpubr_0.6.0 car_3.1-2 xtable_1.8-4
[85] evaluate_0.21 mvtnorm_1.1-3 cli_3.6.1 compiler_4.3.1
[89] rlang_1.1.2 crayon_1.5.2 future.apply_1.10.0 ggsignif_0.6.4
[93] labeling_0.4.2 stringi_1.8.2 viridisLite_0.4.2 assertthat_0.2.1
[97] tables_0.9.17 munsell_0.5.0 bayestestR_0.13.1 fontquiver_0.2.1
[101] Matrix_1.6-4 hms_1.1.3 bit64_4.0.5 gfonts_0.2.0
[105] shiny_1.7.4 gt_0.9.0 broom_1.0.5 huxtable_5.5.2
[109] bit_4.0.5
No non-standard software or hardware was used.
This repository only provides the daily-level aggregated data. The tweet-level data, and specific user demographics, cannot be publicly shared due to privacy concerns arising from matching data to administrative records, data use agreements, and platforms’ terms of service. Our replication materials include the code used to produce the aggregate data from the tweet-level data, and the tweet-level data can be accessed after signing a data-use agreement; contact author D.L. with access requests.
- See Data Privacy Statement in this document
- Download this repository to your local computer
- Open the terminal
- From the terminal window, go to the folder
/src/model/
and run:R CMD BATCH --no-save model.R &
When the script finishes, it will save a file named model.Rout
with the R log file in the folder /src/model/
. It will also create all tables and figures within the folder /man/tables-and-figures/.
The file ‘codebook.pdf’ contains the description of the variables.