Skip to content

Commit

Permalink
markdown
Browse files Browse the repository at this point in the history
  • Loading branch information
LegrandNico committed Nov 6, 2023
1 parent aae4d47 commit f33bd94
Showing 1 changed file with 39 additions and 15 deletions.
54 changes: 39 additions & 15 deletions docs/source/learn.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ glob:
::::{grid} 2

:::{grid-item-card} Creating and manipulating networks of probabilistic nodes
:link: {ref}`probabilistic_networks`
:link: probabilistic_networks
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/networks.png

Expand All @@ -27,7 +27,7 @@ How to create and manipulate a network of probabilistic nodes for reinforcement
:::

:::{grid-item-card} An introduction to the Hierarchical Gaussian Filter
:link: {ref}`theory`
:link: theory
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/hgf.png

Expand All @@ -45,7 +45,7 @@ How the generative model of the Hierarchical Gaussian filter can be turned into
::::{grid} 3

:::{grid-item-card} The binary Hierarchical Gaussian Filter
:link: {ref}`binary_hgf`
:link: binary_hgf
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/binary.png

Expand All @@ -56,7 +56,7 @@ Introducing with example the binary Hierarchical Gaussian filter and its applica
:::

:::{grid-item-card} The continuous Hierarchical Gaussian Filter
:link: {ref}`continuous_hgf`
:link: continuous_hgf
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/hgf.png

Expand All @@ -68,7 +68,7 @@ Introducing with example the continuous Hierarchical Gaussian filter and its app
:::

:::{grid-item-card} The categorical Hierarchical Gaussian Filter
:link: {ref}`categorical_hgf`
:link: categorical_hgf
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/binary.png

Expand All @@ -82,7 +82,7 @@ Introducing the categorical Hierarchical Gaussian Filter as a generalisation of
:::

:::{grid-item-card} Using custom response functions
:link: {ref}`custom_response_functions`
:link: custom_response_functions
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/binary.png

Expand All @@ -96,7 +96,7 @@ How to adapt any model to specific behaviours and experimental design by using c
:::

:::{grid-item-card} Embedding the Hierarchical Gaussian Filter in a Bayesian network for multilevel inference
:link: {ref}`multilevel_hgf`
:link: multilevel_hgf
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/binary.png

Expand All @@ -108,7 +108,7 @@ How to use any model as a distribution to perform hierarchical inference at the
:::

:::{grid-item-card} Embedding the Hierarchical Gaussian Filter in a Bayesian network for multilevel inference
:link: {ref}`parameters_recovery`
:link: parameters_recovery
:link-type: ref
:img-top: https://github.com/ilabcode/pyhgf/blob/master/docs/source/images/binary.png

Expand All @@ -122,15 +122,39 @@ How to use any model as a distribution to perform hierarchical inference at the

## Use cases

| Notebook | Colab |
| --- | ---|
| {ref}`example_1` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Example_1_Heart_rate_variability.ipynb)
| {ref}`example_2` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Example_2_Input_node_volatility_coupling.ipynb)
::::{grid} 3

:::{grid-item-card} Bayesian filtering of cardiac dynamics
:link: example_1
:link-type: ref

+++
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Example_1_Heart_rate_variability.ipynb)

:::

:::{grid-item-card} Value and volatility coupling with an input node
:link: example_2
:link-type: ref

+++
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Example_2_Input_node_volatility_coupling.ipynb)
:::
::::

## Exercises

Hand-on exercises to build intuition around the main components of the HGF and use an agent that optimizes its action under noisy observations.

| Notebook | Colab |
| --- | ---|
| {ref}`hgf_exercises` | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Exercise_1_Using_the_HGF.ipynb)

::::{grid} 3

:::{grid-item-card} Bayesian filtering of cardiac dynamics
:link: hgf_exercises
:link-type: ref

+++
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ilabcode/pyhgf/blob/master/docs/source/notebooks/Exercise_1_Using_the_HGF.ipynb)

:::
::::

0 comments on commit f33bd94

Please sign in to comment.