Licheng Zhong · Hong-Xing "Koven" Yu · Jiajun Wu · Yunzhu Li
Project Page | arXiv | Data
Spring-Gaus_demos.mp4
git clone https://github.com/Colmar-zlicheng/Spring-Gaus.git --recursive
cd Spring-Gaus
# create conda environment
conda create -n Spring_Gaus python=3.7
conda activate Spring_Gaus
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 cudatoolkit=11.6 -c pytorch -c nvidia
pip install -r requirements.txt
# install submodules for 3D Gaussian Splatting
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
# install pytorch3d (https://pytorch3d.org/)
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
Our synthetic data and real world data are provided at Google Drive. Download and extract the data to the data
folder. If you don't have one, make it mkdir data
.
├── data
│ ├── mpm_synthetic
│ │ ├── ...
│ ├── real_capture
│ │ ├── ...
python train.py -g 0 --cfg ${CONFIG_FILE} --eval_cam ${EVAL_CAM_ID} --exp_id ${EXP_ID}
-g, --gpu_id
, visible GPUs for training, e.g.-g 0
. Only supports single GPU.-c, --cfg
, e.g.--cfg ${CONFIG_FILE}
. Config file path.
Optional:
--eval_cam
, e.g.--eval_cam 0
. Camera id used in evaluation. If not provided, will use a random id.--exp_id
specify the name of experiment, e.g.--exp_id ${EXP_ID}
. It defaults to'default'
. All results will be saved inexp/${EXP_ID}_{timestamp}
.
# mpm_synthetic: torus
python train.py -g 0 --cfg config/mpm_synthetic/torus.yaml --eval_cam 5 --exp_id torus
# real_capture: burger
python train.py -g 0 --cfg config/real_capture/burger.yaml --eval_cam 0 --exp_id burger
All the training checkpoints are saved at exp/${EXP_ID}_{timestamp}/checkpoints/
- set ${PATH_TO_CHECKPOINT} as the path to the checkpoint (Spring_Mass.pth.tar) to be loaded
python test.py -g 0 --cfg ${CONFIG_FILE} --exp_id ${EXP_ID} --dy_reload ${PATH_TO_CHECKPOINT}
The code and model provided herein are available for usage as specified in the LICENSE file. By downloading and using the code you agree to the terms in the LICENSE.
@article{zhong2024springgaus,
title = {Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians},
author = {Zhong, Licheng and Yu, Hong-Xing and Wu, Jiajun and Li, Yunzhu},
journal = {European Conference on Computer Vision (ECCV)},
year = {2024}
}
For more questions, please contact Licheng Zhong: [email protected]