Skip to content

Commit

Permalink
format code
Browse files Browse the repository at this point in the history
  • Loading branch information
Charmve committed Feb 4, 2024
1 parent 01d71fc commit c984503
Show file tree
Hide file tree
Showing 86 changed files with 5,242 additions and 3,505 deletions.
2 changes: 1 addition & 1 deletion .flake8
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
[flake8]
max-line-length = 90
exclude = file1.py, **/__init__.py
exclude = ./Chapter08-FinalProject/OccNet/projects/mmdet3d_plugin/bevformer/modules/voxel_encoder.py, **/__init__.py

9 changes: 6 additions & 3 deletions .gitmodules
Original file line number Diff line number Diff line change
Expand Up @@ -49,14 +49,17 @@
url = https://github.com/OpenDriveLab/UniAD

[submodule "SurroundOcc"]
path = code/SurroundOcc
path = dataset/SurroundOcc
url = https://github.com/weiyithu/SurroundOcc
[submodule "Occ3D"]
path = code/Occ3D
path = dataset/Occ3D
url = https://github.com/Tsinghua-MARS-Lab/Occ3D
[submodule "OpenScene"]
path = code/OpenScene
path = dataset/OpenScene
url = https://github.com/OpenDriveLab/OpenScene
[submodule "OpenOccupancy"]
path = dataset/OpenOccupancy
url = https://github.com/JeffWang987/OpenOccupancy


[submodule "Deformable-DETR"]
Expand Down
23 changes: 23 additions & 0 deletions Chapter03-重要数据集和Benchmark介绍/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,26 @@
## nuScenes: A Multimodal Dataset for Autonomous Driving

https://www.youtube.com/watch?v=C6KbbndonGg

https://www.nuscenes.org/nuscenes#download

### Viz

- streetscape.gl
- https://www.youtube.com/watch?v=irS9H0fU-ig
- https://github.com/prodramp/DeepWorks/tree/main/selfdrivingtech/streetscape.gl_demo
- apollo-DreamView
- https://github.com/ApolloAuto/apollo/tree/master/modules/dreamview
- Carla
- https://www.bilibili.com/video/BV1eN4y1Z7Zy
- lgsvl https://github.com/lgsvl/simulator
- Foxglove Studio https://github.com/foxglove/studio
- https://github.com/foxglove/nuscenes2mcap
## Occ3D datasets

- Occ3D
- OpenOccupancy
- SurroundOcc

### 3D Occupancy Prediction Challenge at CVPR 2023 (Server remains `active`)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -286,7 +286,10 @@
optimizer = dict(
type="AdamW",
lr=2e-4,
paramwise_cfg=dict(custom_keys={"img_backbone": dict(lr_mult=0.1),}),
paramwise_cfg=dict(
custom_keys={
'img_backbone': dict(lr_mult=0.1),
}),
weight_decay=0.01,
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -298,7 +298,10 @@
optimizer = dict(
type="AdamW",
lr=2e-4,
paramwise_cfg=dict(custom_keys={"img_backbone": dict(lr_mult=0.1),}),
paramwise_cfg=dict(
custom_keys={
'img_backbone': dict(lr_mult=0.1),
}),
weight_decay=0.01,
)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,10 @@
optimizer = dict(
type="AdamW",
lr=2e-4,
paramwise_cfg=dict(custom_keys={"img_backbone": dict(lr_mult=0.1),}),
paramwise_cfg=dict(
custom_keys={
'img_backbone': dict(lr_mult=0.1),
}),
weight_decay=0.01,
)

Expand Down
24 changes: 17 additions & 7 deletions Chapter07-课程展望与总结/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
* @Author: Charmve [email protected]
* @Date: 2023-10-10 10:49:13
* @LastEditors: Charmve [email protected]
* @LastEditTime: 2024-01-31 22:58:00
* @LastEditTime: 2024-02-02 01:16:50
* @FilePath: /OccNet-Course/Chapter07-课程展望与总结/README.md
* @Version: 1.0.1
* @Blogs: charmve.blog.csdn.net
Expand All @@ -16,12 +16,19 @@

在本专题课程的课程展望和总结中,主要从算法框架、数据、仿真和其他四个方面做未来展望,以及对本课程做一个总结。

- <b>算法框</b>
- 数据驱动的端到端 UniAD
- <b>算法框架</b>
- 数据驱动的端到端 [UniAD](https://github.com/OpenDriveLab/UniAD)
- https://mp.weixin.qq.com/s/qcNtRsBD5aadkavU9TfpFA
- https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving
- End-to-end Interpretable Neural Motion Planner [paper](https://arxiv.org/abs/2101.06679)
- End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners [paper](https://arxiv.org/abs/1803.10158)
- https://github.com/E2E-AD/AD-MLP
- https://github.com/OpenDriveLab/ST-P3
- 大模型 LMDrive [关于大模型和自动驾驶的几个迷思](关于大模型和自动驾驶的几个迷思.md)
- ST-P3 [paper](https://arxiv.org/abs/2207.07601) | [code](https://github.com/OpenDriveLab/ST-P3)
- MP3 [paper](https://arxiv.org/abs/2101.06806) | [video](https://www.bilibili.com/video/BV1tQ4y1k7BX)
- TCP [NeurIPS 2022] Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline. [paper](https://arxiv.org/abs/2206.08129) | [video](https://www.bilibili.com/video/BV1Pe4y1x7E3/?spm_id_from=333.337.search-card.all.click&vd_source=57394ba751fad8e6886be567cccfa5bb)[code](https://github.com/OpenDriveLab/TCP)
- 鉴智机器人 GraphAD
-
- 大模型 [LMDrive](https://github.com/opendilab/LMDrive) [关于大模型和自动驾驶的几个迷思](关于大模型和自动驾驶的几个迷思.md)
- 世界模型:Drive-WM、DriveDreamer
- 矢量地图在线建图:MapTRv2、ScalableMap、VectorMapNet、HDMapNet、GeMap、MapEX
- BEV-OCC-Transformer: OccFormer、OccWorld、Occupancy Flow
Expand All @@ -30,14 +37,17 @@
- 4D数据自动标注:
- OCC与Nerf联合标注
- [面向BEV感知的4D标注方案](https://zhuanlan.zhihu.com/p/642735557?utm_psn=1706841959639998464)
- 数据生成:DrivingDiffusion、[MagicDrive](https://zhuanlan.zhihu.com/p/675303127)、UrbanSyn
- 数据合成:DrivingDiffusion、[MagicDrive](https://zhuanlan.zhihu.com/p/675303127)、UrbanSyn
- https://github.com/runnanchen/CLIP2Scene

- <b>仿真</b>
- UniSim
- [UniSim](https://waabi.ai/unisim/)
- DRIVE Sim

- <b>其他</b>
- 舱驾一体
- AI 编译器: MLIR、TVM、XLA、Triton
- 模型剪枝、模型蒸馏、模型压缩、模型量化(PTQ、QAT)


关注科技前沿公司:[Waabi](https://waabi.ai/unisim/)[Wayve](https://wayve.ai/)
Original file line number Diff line number Diff line change
@@ -1,48 +1,54 @@
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
dataset_type = "CocoDataset"
data_root = "data/coco/"
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
dict(type="LoadImageFromFile"),
dict(type="LoadAnnotations", with_bbox=True, with_mask=True),
dict(type="Resize", img_scale=(1333, 800), keep_ratio=True),
dict(type="RandomFlip", flip_ratio=0.5),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="DefaultFormatBundle"),
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels", "gt_masks"]),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type="LoadImageFromFile"),
dict(
type='MultiScaleFlipAug',
type="MultiScaleFlipAug",
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
dict(type="Resize", keep_ratio=True),
dict(type="RandomFlip"),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="ImageToTensor", keys=["img"]),
dict(type="Collect", keys=["img"]),
],
),
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
ann_file=data_root + "annotations/instances_train2017.json",
img_prefix=data_root + "train2017/",
pipeline=train_pipeline,
),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
ann_file=data_root + "annotations/instances_val2017.json",
img_prefix=data_root + "val2017/",
pipeline=test_pipeline,
),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
ann_file=data_root + "annotations/instances_val2017.json",
img_prefix=data_root + "val2017/",
pipeline=test_pipeline,
),
)
evaluation = dict(metric=["bbox", "segm"])
Loading

0 comments on commit c984503

Please sign in to comment.