Skip to content

Detectron2 Mask R-CNN Fine-tune on KITTI Semantics Dataset and Virtual KITTI 2 Dataset

License

Notifications You must be signed in to change notification settings

CZCS001/detectron2_on_kitti

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detectron2 Mask R-CNN Fine-tune on KITTI Semantics Dataset

Getting Started

This release is implemented and tested on Ubuntu 16.04 with 4 GeForce GTX 1080 Ti GPU cards, Python 3.6.9, PyTorch 1.6.0 and detectron2 0.2.1 .

  1. Clone this repo and also detectron2.

    git clone https://github.com/ZJC1013/detectron2_on_kitti.git
    git clone https://github.com/facebookresearch/detectron2.git
    
  2. Create a detectron2 docker
    See the official instruction

  3. Install additional packages inside the docker container

    cd detectron2_on_kitti
    pip install -r requirements.txt
    

Training

Dataset

To train/fine-tune on the KITTI Semantics Dataset and Virtual KITTI 2 Dataset

  • Download the data data_semantics and the official development kit devkit_semantics from KITTI
  • Download the data vkitti_2.0.3_rgb.tar, vkitti_2.0.3_classSegmentation.tar, and vkitti_2.0.3_instanceSegmentation.tar from Virtual KITTI 2. (Optional)
  • Replace the devkit_semantics/devkit/helpers/kitti_to_cityscapes.py by the one provided in this repo ./script/kitti_to_cityscapes.py
  • Copy the ./script/vkitti2_to_cityscapes.py to the same location with devkit_semantics/devkit/helpers/kitti_to_cityscapes.py (Optional) Your folder should look like the following:
/path/to/downloaded/data/
    kitti
        data_semantics
        devkit_semantics
            devkit
                helpers
                    kitti_to_cityscapes.py  # replaced
                    vkitti2_to_cityscapes.py  # new
    vkitti2
        vkitti_2.0.3_rgb
        vkitti_2.0.3_classSegmentation
        vkitti_2.0.3_instanceSegmentation

Dataset format conversion

Due to the fact that dectectron2 supports Cityscapes format, and KITTI semantics are created to conform with Cityscapes, though there are differences, we need to use scripts kitti_to_cityscapes.py and vkitti2_to_cityscapes.py to convert KITTI semantics data and Virual KITTI 2 data into Cityscapes format. Failing to do so would result in not able to load and register the dataset to detectron2 DatasetCatalog.

# inside your docker container
cd /path/to/downloaded/data/kitti/devkit_semantics/devkit/helpers
python kitti_to_cityscapes.py  # should only take less than a minute to finish
python vkitti2_to_cityscapes.py  # should take about 3 hours to finish

After running these two conversion scripts, your folder structure will become:

/path/to/downloaded/data/
    kitti
        data_semantics
        devkit_semantics
        kitti_semantics_cs  # newly generated, 'cs' stands for cityscapes
            data_semantics
                train
                    kitti  # contains 200 images
                        kitti_000000_10_leftImg8bit.png, ..., kitti_000199_10_leftImg8bit.png
            gtFine
                train
                    kitti  # contains 3 * 200 files
                        kitti_000000_10_gtFine_instanceIds.png
                        kitti_000000_10_gtFine_labelIds.png
                        kitti_000000_10_gtFine_polygons.json
                        ...
                        kitti_000199_10_gtFine_polygons.json
    vkitti2
        vkitti_2.0.3_rgb
        vkitti_2.0.3_classSegmentation
        vkitti_2.0.3_instanceSegmentation
        vkitti2_semantics_cs  # newly generated
            data_semantics
                train
                    Scene01  # contains 447 images
                        Scene01_000000_00000_leftImg8bit.png, ..., Scene01_000000_00446_leftImg8bit.png
                    ...
                    Scene20
            gtFine
                train
                    Scene01  # contains 3 * 447 images
                        Scene01_000000_00000_gtFine_instanceIds.png
                        Scene01_000000_00000_gtFine_labelIds.png
                        Scene01_000000_00000_gtFine_polygons.json
                        ...
                        Scene01_000000_00446_gtFine_polygons.json
                    ...
                    Scene20

For convenience, if you do not want to convert those datasets yourself, you may choose to download the converted kitti_semantics_cs and vkitti2_semantics_cs that I uploaded to a Google Drive with public link here: KITTI_Semantic_in_Cityscapes_Format

Run training

It is recommended that you create symbolic links in ./dataset/ to your actual dataset location.

cd detectron2_on_kitti
cd dataset
# create symlink
ln -sfn /path/to/downloaded/data/kitti/kitti_semantics_cs kitti_semantics_cs
  • To run training on KITTI without evaluation
cd detectron2_on_kitti
python detectron2_mask_rcnn.py --num-gpus 4 --output_dir ./mask_rcnn_output --backbone resnet-50
  • To run training on KITTI with evaluation on Virtual KITTI 2 as val set
    You need to add val set symlinks to kitti_semantics_cs
cd detectron2_on_kitti/dataset
cd kitti_semantics_cs/data_semantics
ln -sfn /path/to/downloaded/data/vkitti2/vkitti2_semantics_cs/data_semantics/train val
cd ../gtFine
ln -sfn /path/to/downloaded/data/vkitti2/vkitti2_semantics_cs/gtFine/train val
cd detectron2_on_kitti
python detectron2_mask_rcnn.py --num-gpus 4 --output_dir ./mask_rcnn_output --backbone resnet-50  --do_eval

You may want to set a number for cfg.TEST.EVAL_PERIOD in main() which controls how many iterations apart an evaluation should perform. After each evaluation, two scores AP and AP50 will be reported in both console output and in Tensorboard eval section.

About

Detectron2 Mask R-CNN Fine-tune on KITTI Semantics Dataset and Virtual KITTI 2 Dataset

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%