Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Select product of slices. #842

Merged
merged 4 commits into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 81 additions & 0 deletions include/highfive/bits/H5Slice_traits.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -231,6 +231,85 @@ class HyperSlab {
std::vector<Select_> selects;
};

///
/// \brief Selects the Cartesian product of slices.
///
/// Given a one-dimensional dataset one might want to select the union of
/// multiple, non-overlapping slices. For example,
///
/// using Slice = std::array<size_t, 2>;
/// using Slices = std::vector<Slice>;
/// auto slices = Slices{{0, 2}, {4, 10}};
/// dset.select(ProductSet(slices);
///
/// to select elements `0`, `1` and `4`, ..., `9` (inclusive).
///
/// For a two-dimensional array one which to select the row specified above,
/// but only columns `2`, `3` and `4`:
///
/// dset.select(ProductSet(slices, Slice{2, 5}));
/// // Analogues with the roles of columns and rows reversed:
/// dset.select(ProductSet(Slice{2, 5}, slices));
///
/// One can generalize once more and allow the unions of slices in both x- and
/// y-dimension:
///
/// auto yslices = Slices{{1, 5}, {7, 8}};
/// auto xslices = Slices{{0, 3}, {6, 8}};
/// dset.select(ProductSet(yslices, xslices));
///
/// which selects the following from a 11x8 dataset:
///
/// . . . . . . . .
/// x x x . . . x x
/// x x x . . . x x
/// x x x . . . x x
/// x x x . . . x x
/// . . . . . . . .
/// . . . . . . . .
/// x x x . . . x x
/// . . . . . . . .
/// . . . . . . . .
/// . . . . . . . .
///
/// Final twist, the selection along and axis may be discrete indices, from
/// which a vector of, possibly single-element, slices can be constructed. The
/// corresponding types are `std::vector<size_t>` and `size_t` for multiple or
/// just a single values. Note, looping over rows or columns one-by-one can be
/// a very serious performance problem. In particular,
///
/// // Avoid:
/// for(auto i : indices) {
/// dset.select(i).read<double>();
/// }
///
/// // Use:
/// std::vector<size_t> tmp(indices.begin(), indices.end());
/// dset.select(tmp).read<std::vector<double>>();
///
/// obvious omit the copy if `indices` already has the correct type.
///
/// The solution works analogous in higher dimensions. A selection `sk` along
/// axis `k` can be interpreted as a subset `S_k` of the natural numbers. The
/// index `i` is in `S_k` if it's selected by `sk`. The `ProductSet` of `s0`,
/// ..., `sN` selects the Cartesian product `S_0 x ... x S_N`.
///
/// Note that the selections along each axis must be sorted and non-overlapping.
///
class ProductSet {
public:
template <class... Slices>
explicit ProductSet(const Slices&... slices);

private:
HyperSlab slab;
std::vector<size_t> shape;

template <typename Derivate>
friend class SliceTraits;
};


template <typename Derivate>
class SliceTraits {
public:
Expand Down Expand Up @@ -277,6 +356,8 @@ class SliceTraits {
///
Selection select(const ElementSet& elements) const;

Selection select(const ProductSet& product_set) const;

template <typename T>
T read(const DataTransferProps& xfer_props = DataTransferProps()) const;

Expand Down
152 changes: 152 additions & 0 deletions include/highfive/bits/H5Slice_traits_misc.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,153 @@ inline ElementSet::ElementSet(const std::vector<std::vector<std::size_t>>& eleme
}
}

namespace detail {
class HyperCube {
public:
HyperCube(size_t rank)
: offset(rank)
, count(rank) {}

void cross(const std::array<size_t, 2>& range, size_t axis) {
offset[axis] = range[0];
count[axis] = range[1] - range[0];
}

RegularHyperSlab asSlab() {
return RegularHyperSlab(offset, count);
}

private:
std::vector<size_t> offset;
std::vector<size_t> count;
};

inline void build_hyper_slab(HyperSlab& slab, size_t /* axis */, HyperCube& cube) {
slab |= cube.asSlab();
}

template <class... Slices>
inline void build_hyper_slab(HyperSlab& slab,
size_t axis,
HyperCube& cube,
const std::array<size_t, 2>& slice,
const Slices&... higher_slices) {
cube.cross(slice, axis);
build_hyper_slab(slab, axis + 1, cube, higher_slices...);
}

template <class... Slices>
inline void build_hyper_slab(HyperSlab& slab,
size_t axis,
HyperCube& cube,
const std::vector<std::array<size_t, 2>>& slices,
const Slices&... higher_slices) {
for (const auto& slice: slices) {
build_hyper_slab(slab, axis, cube, slice, higher_slices...);
}
}

template <class... Slices>
inline void build_hyper_slab(HyperSlab& slab,
size_t axis,
HyperCube& cube,
const std::vector<size_t>& ids,
const Slices&... higher_slices) {
for (const auto& id: ids) {
auto slice = std::array<size_t, 2>{id, id + 1};
build_hyper_slab(slab, axis, cube, slice, higher_slices...);
}
}

template <class... Slices>
inline void build_hyper_slab(HyperSlab& slab,
size_t axis,
HyperCube& cube,
size_t id,
const Slices&... higher_slices) {
auto slice = std::array<size_t, 2>{id, id + 1};
build_hyper_slab(slab, axis, cube, slice, higher_slices...);
}

inline void compute_squashed_shape(size_t /* axis */, std::vector<size_t>& /* shape */) {
// assert(axis == shape.size());
}

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::array<size_t, 2>& slice,
const Slices&... higher_slices);

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::vector<size_t>& points,
const Slices&... higher_slices);

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
size_t point,
const Slices&... higher_slices);

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::vector<std::array<size_t, 2>>& slices,
const Slices&... higher_slices);

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::array<size_t, 2>& slice,
const Slices&... higher_slices) {
shape[axis] = slice[1] - slice[0];
compute_squashed_shape(axis + 1, shape, higher_slices...);
}

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::vector<size_t>& points,
const Slices&... higher_slices) {
shape[axis] = points.size();
compute_squashed_shape(axis + 1, shape, higher_slices...);
}

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
const std::vector<std::array<size_t, 2>>& slices,
const Slices&... higher_slices) {
shape[axis] = 0;
for (const auto& slice: slices) {
shape[axis] += slice[1] - slice[0];
}
compute_squashed_shape(axis + 1, shape, higher_slices...);
}

template <class... Slices>
inline void compute_squashed_shape(size_t axis,
std::vector<size_t>& shape,
size_t /* point */,
const Slices&... higher_slices) {
shape[axis] = 1;
compute_squashed_shape(axis + 1, shape, higher_slices...);
}
} // namespace detail

template <class... Slices>
inline ProductSet::ProductSet(const Slices&... slices) {
auto rank = sizeof...(slices);
detail::HyperCube cube(rank);
detail::build_hyper_slab(slab, 0, cube, slices...);

shape = std::vector<size_t>(rank, size_t(0));
detail::compute_squashed_shape(0, shape, slices...);
}


template <typename Derivate>
inline Selection SliceTraits<Derivate>::select(const HyperSlab& hyperslab,
const DataSpace& memspace) const {
Expand Down Expand Up @@ -157,6 +304,11 @@ inline Selection SliceTraits<Derivate>::select(const ElementSet& elements) const
return detail::make_selection(DataSpace(num_elements), space, details::get_dataset(slice));
}

template <typename Derivate>
inline Selection SliceTraits<Derivate>::select(const ProductSet& product_set) const {
return this->select(product_set.slab, DataSpace(product_set.shape));
}


template <typename Derivate>
template <typename T>
Expand Down
131 changes: 131 additions & 0 deletions src/examples/select_slices.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
#include <functional>
#include <iostream>
#include <string>
#include <vector>

#include <highfive/highfive.hpp>

void print_mask(const std::vector<std::vector<double>>& values,
const std::vector<std::vector<double>>& selected);

void print_values(const std::vector<std::vector<double>>& values);

void pretty_print(const std::vector<std::vector<double>>& values,
const std::vector<std::vector<double>>& selected);

int main(void) {
using namespace HighFive;
using container_type = std::vector<std::vector<double>>;

const std::string file_name("select_slices.h5");
const std::string dataset_name("dset");

// Create a new file using the default property lists.
File file(file_name, File::Truncate);

// we have some example values in a 2D vector 2x5
// clang-format off
container_type values = {
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7},
{2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7},
{3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7},
{4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7},
{5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7},
{6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7},
{7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7},
{8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7},
{9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7}
};
// clang-format on

auto dset = file.createDataSet(dataset_name, values);

// Let's start with the selection `values[1:4, 2:4]`.
{
auto xslice = std::array<size_t, 2>{2, 4};
auto yslice = std::array<size_t, 2>{1, 4};

auto selected = dset.select(ProductSet(yslice, xslice)).read<container_type>();
std::cout << " -- values[1:4, 2:4] ------------ \n";
pretty_print(values, selected);
}

// Now we'd like the selection `values[[1,2,8], 2:4]`.
{
auto xslice = std::array<size_t, 2>{2, 4};
auto yslice = std::vector<size_t>{1, 2, 8};

auto selected = dset.select(ProductSet(yslice, xslice)).read<container_type>();
std::cout << "\n -- values[[1,2,8], 2:4] -------- \n";
pretty_print(values, selected);
}

// ... or the union of multiple slices.
{
auto xslice = std::array<size_t, 2>{2, 4};
auto yslice = std::vector<std::array<size_t, 2>>{{0, 2}, {5, 9}};

auto selected = dset.select(ProductSet(yslice, xslice)).read<container_type>();
std::cout << "\n -- values[[0:2, 5:10], 2:4] -------- \n";
pretty_print(values, selected);
}

// Similar for the union of multiple slices in both x- and y-direction.
{
auto xslice = std::vector<std::array<size_t, 2>>{{0, 1}, {2, 4}, {6, 7}};
auto yslice = std::vector<std::array<size_t, 2>>{{0, 2}, {5, 9}};

auto selected = dset.select(ProductSet(yslice, xslice)).read<container_type>();
std::cout << "\n -- values[[0:2, 5:10], [0:1, 2:4, 6:7]] -------- \n";
pretty_print(values, selected);
}

// If only a single row/column is need use the following. However,
// selecting elements one-by-one in a loop can be a serious performance
// issue.
{
auto xslice = std::vector<std::array<size_t, 2>>{{0, 1}, {2, 4}, {6, 7}};
auto row_id = 3;

auto selected = dset.select(ProductSet(row_id, xslice)).read<container_type>();
std::cout << "\n -- values[3, [0:1, 2:4, 6:7]] -------- \n";
pretty_print(values, selected);
}

return 0;
}

void print_mask(const std::vector<std::vector<double>>& values,
const std::vector<std::vector<double>>& selected) {
std::vector<double> flat_selection;
for (const auto& row: selected) {
for (const auto& x: row) {
flat_selection.push_back(x);
}
}

for (const auto& row: values) {
for (const auto& x: row) {
auto found = std::find(flat_selection.begin(), flat_selection.end(), x) !=
flat_selection.end();
std::cout << (found ? "x" : ".") << " ";
}
std::cout << "\n";
}
}

void print_values(const std::vector<std::vector<double>>& values) {
for (const auto& row: values) {
for (const auto& x: row) {
std::cout << x << " ";
}
std::cout << "\n";
}
}

void pretty_print(const std::vector<std::vector<double>>& values,
const std::vector<std::vector<double>>& selected) {
print_mask(values, selected);
std::cout << "\n";
print_values(selected);
}
Loading
Loading