-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.txt
114 lines (63 loc) · 2.59 KB
/
math.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
INTRO Math review
----------------------------------------------------------------------
Notation ($e$ is cool)
In this course log or $\log_e$ means the {\em natural} logarithm (written {\em ln} in
the textbooks)
If I mean $\log_{10}$, I will say so
exp() is a synonym for ``$e$ to the power of''
----------------------------------------------------------------------
Logarithms
Multiplying on the original scale is equivalent to adding on the log
scale
$\log(ab) = \log(a) + \log(b)$
Division is the opposite of multiplication and subtraction is the
opposite of addition:
$\bigeq \log(a/b) \equiv \log\left(\frac ab\right)
= \log(a) - \log(b)$
Exponentiation is to multiplication like multiplication is to
addition:
$\log(\lambda^k) = k\log(\lambda)$
----------------------------------------------------------------------
Complementarity
$\log_e$ and exp are complementary functions
$\exp(\log_e(x)) \equiv e^{\log_e(x)} = x$
$\log_e(\exp(x)) \equiv \log_e(e^x) = x$
----------------------------------------------------------------------
Exponentiation
The rules for exp are exactly complementary to those for log
$\exp(a+b) = \exp(a) \cdot \exp(b)$
$\bigeq \exp(a-b) = \exp(a) / \exp(b)$
$\exp(k\log_e(\lambda)) = \lambda^k$
Remember: you can't take the log or exponent of something with units
----------------------------------------------------------------------
Problems
You should be able to use these rules to solve simple problems,
algebraically, or on your calculator
If $\lambda^{20} = 0.1$, what is $\lambda$?
Also, word problems
If a population declines by 90% in 20 generations, by
what proportion does it decline in one generation?
----------------------------------------------------------------------
Algebra
If $\lambda^{20} = 0.1$, what is $\lambda$?
ANS $20 \log_e (\lambda) = \log_e(0.1)$
ANS $\log_e(\lambda) = \log_e(0.1)/20$
ANS $\lambda = \exp(\log_e(0.1)/20)$
ANS $\lambda=0.89$
If $\exp(rt) = 5$, and $r=0.1/\yr$, what is $t$?
ANS $rt = \log_e(5)$
ANS $t = \frac{\log_e(5)}{0.1/\yr}$
ANS $t = 16\yr$
----------------------------------------------------------------------
Units are our friends
Keep track of units at all times
Use units to confirm that your answers make sense
Or to find quick ways of getting the answer
Get used to manipulating and cancelling units
36 mpg = ?? L/100km
ANS
$\bigeq \frac{\uname{gal}}{36 \uname{mi}} $
$\bigeq \cdot \frac{\uname{mi}}{1.6\uname{km}} $
$\bigeq \cdot \frac{3.8\uname{L}}{\uname{gal}}$
$\bigeq \cdot \frac{100\uname{km}}{100\uname{km}}$
ANS 6.6 L/100km