-
Notifications
You must be signed in to change notification settings - Fork 140
Installation
Tzu-Mao Li edited this page Dec 12, 2019
·
25 revisions
With PyTorch (any version >= 1.0) or TensorFlow (version >= 2.0) installed, do
pip install redner-gpu
if you have CUDA 10.0 installed and is on Linux. Otherwise do
pip install redner
With PyTorch (any version >= 1.0) or TensorFlow (version >= 2.0) installed, first, install pybind11 and scikit-image (e.g. conda install pybind11 scikit-image
). Next, make sure you have CMake (https://cmake.org) with version >= 3.13 installed.
Now you can clone the redner repository and all the submodules:
git clone --recursive https://github.com/BachiLi/redner.git
If you forgot to add --recursve
, do:
git submodule update --init --recursive
Next, install using the Python script:
python setup.py install
If you wish to build the Python wheels as well, do
python -m pip wheel -w dist --verbose .
We provide two dockerfiles for cpu and gpu modes: manylinux.Dockerfile and manylinux-gpu.Dockerfile.
$ git clone --recurse-submodules [email protected]:BachiLi/redner.git
# Build the image
$ cd redner
# CPU version.
$ docker build -t username/redner:cpu -f manylinux.Dockerfile .
# GPU version.
$ docker build -t username/redner:gpu -f manylinux-gpu.Dockerfile .
# NOTE: the build process is very CPU heavy. It will use all your cores.
# Do not build multiple images at the same time unless you have more
# than 8 cores. On 6 cores, it may freeze the computer.
# Start a shell in your container.
# CPU version
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -it --rm -v /your-path-to/redner:/app -w /app username/redner:cpu /bin/bash
# GPU version
docker run --runtime=nvidia --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -it --rm -v /your-path-to/redner:/app -w /app username/redner:gpu /bin/bash
$ pwd
/app
# Test the setup
$ python -c 'import redner'
# Run some test
$ cd tests
$ python test_two_triangles.py
# Check your result in redner/tests/results/test_two_triangles/
Now you are ready to begin the tutorial.