Skip to content
This repository has been archived by the owner on Feb 3, 2021. It is now read-only.

run spark client job #717

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file modified examples/src/main/python/kmeans.py
100755 → 100644
Empty file.
Empty file modified examples/src/main/python/pi.py
100755 → 100644
Empty file.
126 changes: 126 additions & 0 deletions examples/src/main/python/score-services.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
import sys, os, time
import aztk.spark
from aztk.error import AztkError
import datetime

#UPDATE this section to set your secrets
secrets_confg = aztk.spark.models.SecretsConfiguration(
service_principal=aztk.spark.models.ServicePrincipalConfiguration(
tenant_id="Update with AAD Directory ID",
client_id="Update with App Registration ID",
credential="Update with AAD app password",
batch_account_resource_id="Update with batch account resource Id",
storage_account_resource_id="",
),
#Optional ssh_pub_key
#ssh_pub_key="../../rsa_key.pub"
)

#UPDATE this line to set path to root of repository to reference files
ROOT_PATH = os.path.normpath(os.path.join(os.path.dirname(__file__)))

print(ROOT_PATH)

# create a spark client
client = aztk.spark.Client(secrets_confg)

# list available clusters
clusters = client.list_clusters()

# define a custom script
custom_script = aztk.spark.models.CustomScript(
name="pythondependencies.sh",
script=os.path.join(ROOT_PATH, 'custom-scripts', 'pythondependencies.sh'),
run_on="all-nodes")

# define spark configuration
spark_conf = aztk.spark.models.SparkConfiguration(
spark_defaults_conf=os.path.join(ROOT_PATH, '.aztk', 'spark-defaults.conf'),
spark_env_sh=os.path.join(ROOT_PATH, '.aztk', 'config', 'spark-env.sh'),
core_site_xml=os.path.join(ROOT_PATH, '.aztk', 'config', 'core-site.xml'),
jars=[os.path.join(ROOT_PATH, '.aztk','config', 'jars', jar) for jar in os.listdir(os.path.join(ROOT_PATH, '.aztk', 'jars'))]
)

userconfig = aztk.spark.models.UserConfiguration(
username="spark",
ssh_key="~/.ssh/id_rsa.pub" ,
password="spark"
)

toolkit=aztk.models.Toolkit(software="spark", version="2.3.0")

# configure my cluster
cluster_config = aztk.spark.models.ClusterConfiguration(
cluster_id="myfirstcluster", #Cluster should not include capital letters
size = 4,
vm_size="Standard_E4s_v3", #standard_g2 4cpu, 56Gib, Standard_E8s_v3 : 8cores, 64Gb
custom_scripts=[custom_script],
spark_configuration=spark_conf,
user_configuration=userconfig,
toolkit=toolkit
)

# create a cluster, and wait until it is ready
try:
print("Cluster configured creating cluster now :", datetime.datetime.now())
cluster = client.create_cluster(cluster_config)

cluster = client.get_cluster(cluster_config.cluster_id)
print("getting cluster for", cluster_config.cluster_id)

# The cluster will take 5 to 10 minutes to be ready depending on the size and availability in the batch account
cluster = client.wait_until_cluster_is_ready(cluster.id)
except AztkError as e:
print(e)
sys.exit()

print("Cluser is ready now:", datetime.datetime.now())

# create a user for the cluster if you need to connect to it
#client.create_user(cluster.id, "userone", "chooseyourpassword")

# create the app to run
app1 = aztk.spark.models.ApplicationConfiguration(
name="scoring",
application= os.path.join(ROOT_PATH, 'main_scoring.py'),
driver_memory = "30g",
executor_memory = "30g", #the memory you think your app needs. make sure that each node has at least that amount of memory
py_files =['utils.py', 'datastorage.py'] #Update this list if your main app has dependencies on other modules
)

# submit an app and wait until it is finished running
client.submit(cluster.id, app1)
print("Submitted app. Waiting ...")

#wait
client.wait_until_application_done(cluster.id, app1.name)

# get logs for app, print to console
#app1_logs1 = client.get_application_log(cluster_id=cluster_config.cluster_id, application_name=app1.name)
#print(app1_logs1.log)

print("Done waiting time now is:", datetime.datetime.now())
# get status of app
status = client.get_application_status(cluster_config.cluster_id, app1.name)

# stream logs of app, print to console as it runs
current_bytes = 0
while True:
app1_logs = client.get_application_log(
cluster_id=cluster_config.cluster_id,
application_name=app1.name,
tail=True,
current_bytes=current_bytes)

print(app1_logs.log, end="")

if app1_logs.application_state == 'completed':
break
current_bytes = app1_logs.total_bytes
time.sleep(1)

# wait until all jobs finish, then delete the cluster
client.wait_until_applications_done(cluster.id)

print("All jobs finished let's delete the cluster")
client.delete_cluster(cluster.id)
Empty file modified examples/src/main/python/sort.py
100755 → 100644
Empty file.
Empty file modified examples/src/main/python/wordcount.py
100755 → 100644
Empty file.