Skip to content

Commit

Permalink
Merge pull request #42 from matthewtownson/master
Browse files Browse the repository at this point in the history
Adding FFT padding to cross-correlation Centroider
  • Loading branch information
matthewtownson authored Oct 17, 2018
2 parents 7fa6a71 + d7cf202 commit 321e0cc
Show file tree
Hide file tree
Showing 7 changed files with 67 additions and 45 deletions.
8 changes: 6 additions & 2 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,14 +1,18 @@
language: python
sudo: false
sudo: true
dist: xenial

branches:
only:
- master
- v*

python:
- 2.7
# - 3.4 Not in travis repositories
- 3.5
- 3.6
# - 3.7
- 3.7

addons:
apt:
Expand Down
2 changes: 1 addition & 1 deletion aotools/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from . import astronomy, functions, image_processing, wfs, turbulence
from . import astronomy, functions, image_processing, wfs, turbulence, opticalpropagation

from .astronomy import *
from .functions import *
Expand Down
52 changes: 26 additions & 26 deletions aotools/functions/karhunenLoeve.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,27 +9,22 @@
(wavefront modelling and reconstruction).
A closely similar implementation can also be find in Yorick in the YAO package.
USAGE
Usage
-----
Main routine is 'make_kl' to generate KL basis of dimension [dim, dim, nmax].
Main routine is 'make_kl' to generate KL basis of dimension ``[dim, dim, nmax]``.
For Kolmogorov statistics, e.g.:
kl, _, _, _ = make_kl(150, 128, ri = 0.2, stf='kolmogorov')
For Kolmogorov statistics, e.g. ::
REQUIREMENTS
------------
numpy
scipy
kl, _, _, _ = make_kl(150, 128, ri = 0.2, stf='kolmogorov')
TO FIX
------
- make_kl with von Karman stf fails:
-> implemented but KL generation failed in 'while loop' of gkl_fcom...
.. warning::
@author: Gilles Orban de Xivry (ULiege)
@date: November 2017
make_kl with von Karman stf fails. It has been implemented but KL generation failed in 'while loop' of gkl_fcom...
.. codeauthor:: Gilles Orban de Xivry (ULieve)
:date: November 2017
'''

import numpy as np
import scipy
from scipy.ndimage.interpolation import map_coordinates
Expand Down Expand Up @@ -449,8 +444,8 @@ def set_pctr(bas, ncp=None, ncmar=None):
Parameters
----------
bas : dic
gkl_basis dic built with the gkl_bas routine
bas : dic
gkl_basis dic built with the gkl_bas routine
'''
if ncmar is None:
ncmar = 2
Expand Down Expand Up @@ -505,11 +500,15 @@ def pcgeom(nr, npp, ncp, ri, ncmar):
'''
This routine builds a geom dic.
px, py : the x, y coordinates of points in the polar arrays.
cr, cp : the r, phi coordinates of points in the cartesian grids.
ncmar : allows the possibility that there is a margin of
ncmar points in the cartesian arrays outside the region of
interest.
Parameters
----------
px, py : int
the x, y coordinates of points in the polar arrays.
cr, cp :
the r, phi coordinates of points in the cartesian grids.
ncmar :
allows the possibility that there is a margin of ncmar points in the
cartesian arrays outside the region of interest.
'''
nused = ncp - 2 * ncmar
ff = 0.5 * nused
Expand Down Expand Up @@ -571,13 +570,14 @@ def make_kl(nmax, dim, ri=0.0, nr=40,
'''
Main routine to generatre a KL basis of dimension [nmax, dim, dim].
For Kolmogorov statistics, e.g.:
For Kolmogorov statistics, e.g. ::
kl, _, _, _ = make_kl(150, 128, ri = 0.2, stf='kolmogorov')
As a rule of thumb
nr x npp = 50 x 250 is fine up to 500 functions
60 x 300 for a thousand
80 x 400 for three thousands.
| As a rule of thumb
| nr x npp = 50 x 250 is fine up to 500 functions
| 60 x 300 for a thousand
| 80 x 400 for three thousands.
Parameters
----------
Expand Down
31 changes: 18 additions & 13 deletions aotools/image_processing/centroiders.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import numpy


def correlation_centroid(im, ref, threshold=0.):
def correlation_centroid(im, ref, threshold=0., padding=1):
"""
Correlation Centroider, currently only works for 3d im shape.
Performs a simple thresholded COM on the correlation.
Expand All @@ -18,6 +18,7 @@ def correlation_centroid(im, ref, threshold=0.):
im: sub-aperture images (t, y, x)
ref: reference image (y, x)
threshold: fractional threshold for COM (0=all pixels, 1=brightest pixel)
padding: factor to zero-pad arrays in Fourier transforms
Returns:
ndarray: centroids of im (2, t), given in order x, y
"""
Expand All @@ -38,17 +39,20 @@ def correlation_centroid(im, ref, threshold=0.):
centroids = numpy.zeros((2, nt))
for frame in range(nt):
# Correlate frame with reference image
corr = cross_correlate(im[frame], ref)
corr = cross_correlate(im[frame], ref, padding=padding)

cx, cy = centreOfGravity(corr, threshold=threshold)

cy -= float(ny) / 2. * (float(padding) - 1)
cx -= float(nx) / 2. * (float(padding) - 1)

centroids[:, frame] = cx, cy

return centroids


def centreOfGravity(img, threshold=0, **kwargs):
'''
"""
Centroids an image, or an array of images.
Centroids over the last 2 dimensions.
Sets all values under "threshold*max_value" to zero before centroiding
Expand All @@ -61,22 +65,22 @@ def centreOfGravity(img, threshold=0, **kwargs):
Returns:
ndarray: Array of centroid values (2[, n])
'''
if threshold!=0:
if len(img.shape)==2:
"""
if threshold != 0:
if len(img.shape) == 2:
img = numpy.where(img>threshold*img.max(), img, 0 )
else:
img_temp = (img.T - threshold*img.max(-1).max(-1)).T
zero_coords = numpy.where(img_temp<0)
zero_coords = numpy.where(img_temp < 0)
img[zero_coords] = 0

if len(img.shape)==2:
y_cent,x_cent = numpy.indices(img.shape)
if len(img.shape) == 2:
y_cent, x_cent = numpy.indices(img.shape)
y_centroid = (y_cent*img).sum()/img.sum()
x_centroid = (x_cent*img).sum()/img.sum()

else:
y_cent, x_cent = numpy.indices((img.shape[-2],img.shape[-1]))
y_cent, x_cent = numpy.indices((img.shape[-2], img.shape[-1]))
y_centroid = (y_cent*img).sum(-1).sum(-1)/img.sum(-1).sum(-1)
x_centroid = (x_cent*img).sum(-1).sum(-1)/img.sum(-1).sum(-1)

Expand Down Expand Up @@ -116,19 +120,20 @@ def brightestPxl(img, threshold, **kwargs):
return centreOfGravity(img)


def cross_correlate(x, y):
def cross_correlate(x, y, padding=1):
"""
2D convolution using FFT, use to generate cross-correlations.
Args:
x (array): subap image
y (array): reference image
padding (int): Factor to zero-pad arrays in Fourier transforms
Returns:
ndarray: cross-correlation of x and y
"""
reference_image = numpy.conjugate(numpy.fft.fft2(y))
reference_image = numpy.conjugate(numpy.fft.fft2(y, s=[y.shape[0] * padding, y.shape[1] * padding]))
frame = numpy.fft.fft2(x, s=[x.shape[0] * padding, x.shape[1] * padding])

frame = numpy.fft.fft2(x)
cross_correlation = frame * reference_image
cross_correlation = numpy.fft.fftshift(numpy.abs(numpy.fft.ifft2(cross_correlation)))

Expand Down
11 changes: 10 additions & 1 deletion doc/source/zernike.rst
Original file line number Diff line number Diff line change
@@ -1,8 +1,17 @@
Circular Functions
==================

Zernike Modes
=============
+++++++++++++

.. automodule:: aotools.functions.zernike
:members:
:undoc-members:
:show-inheritance:

Karhunen Loeve Modes
++++++++++++++++++++
.. automodule:: aotools.functions.karhunenLoeve
:members:
:undoc-members:
:show-inheritance:
6 changes: 5 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,5 +24,9 @@
description='A set of useful functions for Adaptive Optics in Python',
long_description=long_description,
version=versioneer.get_version(),
cmdclass=versioneer.get_cmdclass()
cmdclass=versioneer.get_cmdclass(),
install_requires=[
'numpy',
'scipy',
],
)
2 changes: 1 addition & 1 deletion test/test_centroiders.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def test_quadCell_many():
def test_convolution():
im = numpy.random.random((10, 10))
ref = numpy.random.random((10, 10))
corr = image_processing.cross_correlate(im, ref)
corr = image_processing.cross_correlate(im, ref, padding=1)
assert(corr.shape == im.shape)


Expand Down

0 comments on commit 321e0cc

Please sign in to comment.