-
Notifications
You must be signed in to change notification settings - Fork 59
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
14 changed files
with
1,200 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
compute_environment: LOCAL_MACHINE | ||
debug: false | ||
distributed_type: MULTI_GPU | ||
downcast_bf16: 'no' | ||
gpu_ids: all | ||
machine_rank: 0 | ||
main_training_function: main | ||
mixed_precision: bf16 | ||
num_machines: 1 | ||
num_processes: 8 | ||
rdzv_backend: static | ||
same_network: true | ||
tpu_env: [] | ||
tpu_use_cluster: false | ||
tpu_use_sudo: false | ||
use_cpu: false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
|
||
experiment: | ||
type: lrm | ||
seed: 42 | ||
parent: lrm-objaverse | ||
child: small-dummyrun | ||
|
||
model: | ||
camera_embed_dim: 1024 | ||
rendering_samples_per_ray: 96 | ||
transformer_dim: 512 | ||
transformer_layers: 12 | ||
transformer_heads: 8 | ||
triplane_low_res: 32 | ||
triplane_high_res: 64 | ||
triplane_dim: 32 | ||
encoder_type: dinov2 | ||
encoder_model_name: dinov2_vits14_reg | ||
encoder_feat_dim: 384 | ||
encoder_freeze: false | ||
|
||
dataset: | ||
subsets: | ||
- name: objaverse | ||
root_dirs: | ||
- <REPLACE_WITH_RENDERING_ROOT> | ||
meta_path: | ||
train: <TRAIN_UIDS_IN_JSON> | ||
val: <VAL_UIDS_IN_JSON> | ||
sample_rate: 1.0 | ||
sample_side_views: 3 | ||
source_image_res: 224 | ||
render_image: | ||
low: 64 | ||
high: 192 | ||
region: 64 | ||
normalize_camera: true | ||
normed_dist_to_center: auto | ||
num_train_workers: 4 | ||
num_val_workers: 2 | ||
pin_mem: true | ||
|
||
train: | ||
mixed_precision: bf16 # REPLACE THIS BASED ON GPU TYPE | ||
find_unused_parameters: false | ||
loss: | ||
pixel_weight: 1.0 | ||
perceptual_weight: 1.0 | ||
tv_weight: 5e-4 | ||
optim: | ||
lr: 4e-4 | ||
weight_decay: 0.05 | ||
beta1: 0.9 | ||
beta2: 0.95 | ||
clip_grad_norm: 1.0 | ||
scheduler: | ||
type: cosine | ||
warmup_real_iters: 3000 | ||
batch_size: 16 # REPLACE THIS (PER GPU) | ||
accum_steps: 1 # REPLACE THIS | ||
epochs: 60 # REPLACE THIS | ||
debug_global_steps: null | ||
|
||
val: | ||
batch_size: 4 | ||
global_step_period: 1000 | ||
debug_batches: null | ||
|
||
saver: | ||
auto_resume: true | ||
load_model: null | ||
checkpoint_root: ./exps/checkpoints | ||
checkpoint_global_steps: 1000 | ||
checkpoint_keep_level: 5 | ||
|
||
logger: | ||
stream_level: WARNING | ||
log_level: INFO | ||
log_root: ./exps/logs | ||
tracker_root: ./exps/trackers | ||
enable_profiler: false | ||
trackers: | ||
- tensorboard | ||
image_monitor: | ||
train_global_steps: 100 | ||
samples_per_log: 4 | ||
|
||
compile: | ||
suppress_errors: true | ||
print_specializations: true | ||
disable: true |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,4 +13,4 @@ | |
# limitations under the License. | ||
|
||
|
||
# from .mixer import MixerDataset | ||
from .mixer import MixerDataset |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Copyright (c) 2023-2024, Zexin He | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import math | ||
from functools import partial | ||
import torch | ||
|
||
__all__ = ['MixerDataset'] | ||
|
||
|
||
class MixerDataset(torch.utils.data.Dataset): | ||
|
||
def __init__(self, | ||
split: str, | ||
subsets: list[dict], | ||
**dataset_kwargs, | ||
): | ||
self.subsets = [ | ||
self._dataset_fn(subset, split)(**dataset_kwargs) | ||
for subset in subsets | ||
] | ||
self.virtual_lens = [ | ||
math.ceil(subset_config['sample_rate'] * len(subset_obj)) | ||
for subset_config, subset_obj in zip(subsets, self.subsets) | ||
] | ||
|
||
@staticmethod | ||
def _dataset_fn(subset_config: dict, split: str): | ||
name = subset_config['name'] | ||
|
||
dataset_cls = None | ||
if name == "objaverse": | ||
from .objaverse import ObjaverseDataset | ||
dataset_cls = ObjaverseDataset | ||
# elif name == 'mvimgnet': | ||
# from .mvimgnet import MVImgNetDataset | ||
# dataset_cls = MVImgNetDataset | ||
else: | ||
raise NotImplementedError(f"Dataset {name} not implemented") | ||
|
||
return partial( | ||
dataset_cls, | ||
root_dirs=subset_config['root_dirs'], | ||
meta_path=subset_config['meta_path'][split], | ||
) | ||
|
||
def __len__(self): | ||
return sum(self.virtual_lens) | ||
|
||
def __getitem__(self, idx): | ||
subset_idx = 0 | ||
virtual_idx = idx | ||
while virtual_idx >= self.virtual_lens[subset_idx]: | ||
virtual_idx -= self.virtual_lens[subset_idx] | ||
subset_idx += 1 | ||
real_idx = virtual_idx % len(self.subsets[subset_idx]) | ||
return self.subsets[subset_idx][real_idx] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Copyright (c) 2023-2024, Zexin He | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import os | ||
from typing import Union | ||
import random | ||
import numpy as np | ||
import torch | ||
from megfile import smart_path_join, smart_open | ||
|
||
from .base import BaseDataset | ||
from .cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse | ||
from ..utils.proxy import no_proxy | ||
|
||
__all__ = ['ObjaverseDataset'] | ||
|
||
|
||
class ObjaverseDataset(BaseDataset): | ||
|
||
def __init__(self, root_dirs: list[str], meta_path: str, | ||
sample_side_views: int, | ||
render_image_res_low: int, render_image_res_high: int, render_region_size: int, | ||
source_image_res: int, normalize_camera: bool, | ||
normed_dist_to_center: Union[float, str] = None, num_all_views: int = 32): | ||
super().__init__(root_dirs, meta_path) | ||
self.sample_side_views = sample_side_views | ||
self.render_image_res_low = render_image_res_low | ||
self.render_image_res_high = render_image_res_high | ||
self.render_region_size = render_region_size | ||
self.source_image_res = source_image_res | ||
self.normalize_camera = normalize_camera | ||
self.normed_dist_to_center = normed_dist_to_center | ||
self.num_all_views = num_all_views | ||
|
||
@staticmethod | ||
def _load_pose(file_path): | ||
pose = np.load(smart_open(file_path, 'rb')) | ||
pose = torch.from_numpy(pose).float() | ||
return pose | ||
|
||
@no_proxy | ||
def inner_get_item(self, idx): | ||
""" | ||
Loaded contents: | ||
rgbs: [M, 3, H, W] | ||
poses: [M, 3, 4], [R|t] | ||
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]] | ||
""" | ||
uid = self.uids[idx] | ||
root_dir = self._locate_datadir(self.root_dirs, uid, locator="intrinsics.npy") | ||
|
||
pose_dir = os.path.join(root_dir, uid, 'pose') | ||
rgba_dir = os.path.join(root_dir, uid, 'rgba') | ||
intrinsics_path = os.path.join(root_dir, uid, 'intrinsics.npy') | ||
|
||
# load intrinsics | ||
intrinsics = np.load(smart_open(intrinsics_path, 'rb')) | ||
intrinsics = torch.from_numpy(intrinsics).float() | ||
|
||
# sample views (incl. source view and side views) | ||
sample_views = np.random.choice(range(self.num_all_views), self.sample_side_views + 1, replace=False) | ||
poses, rgbs, bg_colors = [], [], [] | ||
source_image = None | ||
for view in sample_views: | ||
pose_path = smart_path_join(pose_dir, f'{view:03d}.npy') | ||
rgba_path = smart_path_join(rgba_dir, f'{view:03d}.png') | ||
pose = self._load_pose(pose_path) | ||
bg_color = random.choice([0.0, 0.5, 1.0]) | ||
rgb = self._load_rgba_image(rgba_path, bg_color=bg_color) | ||
poses.append(pose) | ||
rgbs.append(rgb) | ||
bg_colors.append(bg_color) | ||
if source_image is None: | ||
source_image = self._load_rgba_image(rgba_path, bg_color=1.0) | ||
assert source_image is not None, "Really bad luck!" | ||
poses = torch.stack(poses, dim=0) | ||
rgbs = torch.cat(rgbs, dim=0) | ||
|
||
if self.normalize_camera: | ||
poses = camera_normalization_objaverse(self.normed_dist_to_center, poses) | ||
|
||
# build source and target camera features | ||
source_camera = build_camera_principle(poses[:1], intrinsics.unsqueeze(0)).squeeze(0) | ||
render_camera = build_camera_standard(poses, intrinsics.repeat(poses.shape[0], 1, 1)) | ||
|
||
# adjust source image resolution | ||
source_image = torch.nn.functional.interpolate( | ||
source_image, size=(self.source_image_res, self.source_image_res), mode='bicubic', align_corners=True).squeeze(0) | ||
source_image = torch.clamp(source_image, 0, 1) | ||
|
||
# adjust render image resolution and sample intended rendering region | ||
render_image_res = np.random.randint(self.render_image_res_low, self.render_image_res_high + 1) | ||
render_image = torch.nn.functional.interpolate( | ||
rgbs, size=(render_image_res, render_image_res), mode='bicubic', align_corners=True) | ||
render_image = torch.clamp(render_image, 0, 1) | ||
anchors = torch.randint( | ||
0, render_image_res - self.render_region_size + 1, size=(self.sample_side_views + 1, 2)) | ||
crop_indices = torch.arange(0, self.render_region_size, device=render_image.device) | ||
index_i = (anchors[:, 0].unsqueeze(1) + crop_indices).view(-1, self.render_region_size, 1) | ||
index_j = (anchors[:, 1].unsqueeze(1) + crop_indices).view(-1, 1, self.render_region_size) | ||
batch_indices = torch.arange(self.sample_side_views + 1, device=render_image.device).view(-1, 1, 1) | ||
cropped_render_image = render_image[batch_indices, :, index_i, index_j].permute(0, 3, 1, 2) | ||
|
||
return { | ||
'uid': uid, | ||
'source_camera': source_camera, | ||
'render_camera': render_camera, | ||
'source_image': source_image, | ||
'render_image': cropped_render_image, | ||
'render_anchors': anchors, | ||
'render_full_resolutions': torch.tensor([[render_image_res]], dtype=torch.float32).repeat(self.sample_side_views + 1, 1), | ||
'render_bg_colors': torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1), | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,5 +17,5 @@ | |
|
||
REGISTRY_RUNNERS = Registry() | ||
|
||
# from .train import * | ||
from .train import * | ||
from .infer import * |
Oops, something went wrong.