Skip to content

Code for ECCV 2020 "DVI: Depth Guided Video Inpainting for Autonomous Driving"

Notifications You must be signed in to change notification settings

18020126185/Depth-Guided-Inpainting

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Depth-Guided-Inpainting

This is code for "DVI: Depth Guided Video Inpainting for Autonomous Driving". ECCV 2020.

Video Inpainting:

Introduction

To get clear street-view and photo-realistic simulation in autonomous driving, we present an automatic video inpainting algorithm that can remove traffic agents from videos and synthesize missing regions with the guidance of depth/point cloud. By building a dense 3D map from stitched point clouds, frames within a video are geometrically correlated via this common 3D map. In order to fill a target inpainting area in a frame, it is straightforward to transform pixels from other frames into the current one with correct occlusion. Furthermore, we are able to fuse multiple videos through 3D point cloud registration, making it possible to inpaint a target video with multiple source videos.

Data preparation

Please download full data at Apolloscape or using link below. The first video inpainting dataset with depth.

mask_and_image_0.zip data_0.zip lidar_bg_0.zip

mask_and_image_1.zip data_1.zip lidar_bg_1.zip

mask_and_image_2.zip data_2.zip lidar_bg_2.zip

mask_and_image_3.zip data_3.zip lidar_bg_3.zip

Data Structure

The folder structure of the inpainting is as follows:

  1. xxx-yyy_mask.zip: xxx.aaa.jpg is original image. xxx.aaa.png is labelled mask of cars.

  2. xxx-yyy.zip: Data includes ds_map.ply, global_poses.txt, rel_poses.txt, xxx.aaa_optR.xml. ds_map.ply is dense map build from lidar frames.

  3. lidar_bg.zip: lidar background point cloud in ply format.

Data Prepareation

catkin_ws
├── build
├── devel
├── src   
code
├── libDAI-0.3.0
├── opengm
data
├── pandora_liang
    ├── set2
          ├── 1534313590-1534313597
          ├── 1534313590-1534313597_mask
          ├── 1534313590-1534313597_results
          ├── lidar_bg
          ├── ...

Set up

  1. Install opengm

    download OpenGM 2.3.5 at http://hciweb2.iwr.uni-heidelberg.de/opengm/index.php?l0=library

    or

    https://github.com/opengm/opengm for version 2.0.2

  2. Build opengm with MRF:

    cd code/opengm
    mkdir build
    cd build 
    cmake -DWITH_MRF=ON ..
    make
    sudo make install
    
  3. Make catkin:

    cd catkin_ws
    source devel/setup.bash
    catkin_make
    

Evaluation

cd catkin_ws 
rosrun loam_velodyne videoInpaintingTexSynthFusion 1534313590 1534313597 1534313594 ../data/pandora_liang/set2

Citation

Please cite our paper in your publications if our dataset is used in your research.

DVI: Depth Guided Video Inpainting for Autonomous Driving.

Miao Liao, Feixiang Lu, Dingfu Zhou, Sibo Zhang, Wei Li, Ruigang Yang. ECCV 2020. PDF, Result Video, Presentation Video

@article{liao2020dvi,
  title={DVI: Depth Guided Video Inpainting for Autonomous Driving},
  author={Liao, Miao and Lu, Feixiang and Zhou, Dingfu and Zhang, Sibo and Li, Wei and Yang, Ruigang},
  journal={arXiv preprint arXiv:2007.08854},
  year={2020}
}

ECCV 2020 Presentation Video

Depth Guided Video Inpainting for Autonomous Driving

Result Video

Depth Guided Video Inpainting for Autonomous Driving

Q & A

Get MRF-LIB working within opengm2:

~/code/opengm/build$ cmake -DWITH_MRF=ON ..  #turn on MRF option within opengm cmake
~/code/opengm/src/external/patches/MRF$ ./patchMRF-v2.1.sh

Change to:
TRWS_URL=https://download.microsoft.com/download/6/E/D/6ED0E6CF-C06E-4D4E-9F70-C5932795CC12/
Within patchMRF-v2.1.sh

About

Code for ECCV 2020 "DVI: Depth Guided Video Inpainting for Autonomous Driving"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 92.3%
  • CMake 4.3%
  • C 1.7%
  • Python 1.3%
  • Shell 0.4%