-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathplot-point-3d.py
executable file
·212 lines (188 loc) · 6.6 KB
/
plot-point-3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/python2
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import argparse, sys
stdin_fname = '$stdin$'
def get_args():
description = "plot points into graph. x and y seperated with white space in one line, or just y's"
parser = argparse.ArgumentParser(description = description)
parser.add_argument('-i', '--input',
help = 'input data file, "-" for stdin, default stdin',
default = '-')
parser.add_argument('-o', '--output',
help = 'output image', default = '')
parser.add_argument('--show',
help = 'show the figure after rendered',
action = 'store_true')
parser.add_argument('-t', '--title',
help = 'title of the graph',
default = '')
parser.add_argument('--xlabel',
help = 'x label',
default = 'x')
parser.add_argument('--ylabel',
help = 'y label',
default = 'y')
parser.add_argument('--zlabel',
help = 'z label',
default = 'z')
parser.add_argument('--xlim', help = 'xlim')
parser.add_argument('--ylim', help = 'ylim')
parser.add_argument('--zlim', help = 'zlim')
parser.add_argument('--annotate-maximum',
help = 'annonate maximum value in graph',
action = 'store_true')
parser.add_argument('--annotate-minimum',
help = 'annonate minimum value in graph',
action = 'store_true')
parser.add_argument('--xkcd',
help = 'xkcd style',
action = 'store_true')
args = parser.parse_args();
if (not args.show) and len(args.output) == 0:
raise Exception("at least one of --show and --output/-o must be specified")
if args.xlim:
args.xlim = map(float, args.xlim.rstrip().split(','))
if args.ylim:
args.ylim = map(float, args.ylim.rstrip().split(','))
if args.zlim:
args.zlim = map(float, args.zlim.rstrip().split(','))
return args
def filter_valid_range(points, rect):
"""rect = (min_x, max_x, min_y, max_y)"""
ret = []
for x, y in points:
if x >= rect[0] and x <= rect[1] and y >= rect[2] and y <= rect[3]:
ret.append((x, y))
if len(ret) == 0:
ret.append(points[0])
return ret
def do_plot(data_x, data_y, data_z, args):
fig = plt.figure(figsize = (16.18, 10))
projection = '2d'
if len(data_z) > 0:
projection = '3d'
ax = fig.add_axes((0.1, 0.2, 0.8, 0.7), projection = projection)
if projection == '2d':
ax.scatter(data_x, data_y)
else:
ax.scatter(data_x, data_y, data_z)
if args.xlim:
ax.set_xlim(args.xlim)
if args.ylim:
ax.set_ylim(args.ylim)
if args.zlim:
ax.set_zlim3d(args.zlim)
if args.xlim or args.ylim or args.zlim:
pass
ax.set_aspect('equal')
else:
ax.set_aspect('equal', 'datalim')
#ax.spines['right'].set_color('none')
#ax.spines['left'].set_color('none')
#plt.xticks([])
#plt.yticks([])
if args.annotate_maximum or args.annotate_minimum:
max_x, min_x = max(data_x), min(data_x)
max_y, min_y = max(data_y), min(data_y)
x_range = max_x - min_x
y_range = max_y - min_y
x_max, y_max = data_y[0], data_y[0]
x_min, y_min = data_x[0], data_y[0]
rect = ax.axis()
for i in xrange(1, len(data_x)):
if data_y[i] > y_max:
y_max = data_y[i]
x_max = data_x[i]
if data_y[i] < y_min:
y_min = data_y[i]
x_min = data_x[i]
if args.annotate_maximum:
text_x, text_y = filter_valid_range([
(x_max + 0.05 * x_range,
y_max + 0.025 * y_range),
(x_max - 0.05 * x_range,
y_max + 0.025 * y_range),
(x_max + 0.05 * x_range,
y_max - 0.025 * y_range),
(x_max - 0.05 * x_range,
y_max - 0.025 * y_range)],
rect)[0]
ax.annotate('maximum ({:.3f},{:.3f})' . format(x_max, y_max),
xy = (x_max, y_max),
xytext = (text_x, text_y),
arrowprops = dict(arrowstyle = '->'))
if args.annotate_minimum:
text_x, text_y = filter_valid_range([
(x_min + 0.05 * x_range,
y_min - 0.025 * y_range),
(x_min - 0.05 * x_range,
y_min - 0.025 * y_range),
(x_min + 0.05 * x_range,
y_min + 0.025 * y_range),
(x_min - 0.05 * x_range,
y_min + 0.025 * y_range)],
rect)[0]
ax.annotate('minimum ({:.3f},{:.3f})' . format(x_min, y_min),
xy = (x_min, y_min),
xytext = (text_x, text_y),
arrowprops = dict(arrowstyle = '->'))
ax.set_xlabel(args.xlabel)
ax.set_ylabel(args.ylabel)
if projection == '3d':
ax.set_zlabel(args.zlabel)
fig.text(0.5, 0.05, args.title, ha = 'center')
if args.output != '':
plt.savefig(args.output)
if args.show:
plt.show()
def main():
args = get_args()
if args.input == stdin_fname:
fin = sys.stdin
else:
fin = open(args.input)
data_x = []
data_y = []
data_z = []
data_format = -1
for lineno, line in enumerate(fin.readlines()):
line = [float(i) for i in line.rstrip().split()]
line_data_format = -1
x, y, z = None, None, None
if len(line) == 0:
continue
if len(line) == 2:
line_data_format = 0
x, y = line
elif len(line) == 1:
line_data_format = 1
x, y = lineno, line[0]
elif len(line) == 3:
x, y, z = line
line_data_format = 2;
else:
raise RuntimeError('Can not parse input data at line {}' . format(lineno + 1))
if data_format == -1:
data_format = line_data_format
else:
if line_data_format != data_format:
raise RuntimeError('data format is not consistent, at line {}' \
. format(lineno + 1))
data_x.append(x)
data_y.append(y)
if z != None:
data_z.append(z)
print len(data_x)
if args.input != stdin_fname:
fin.close()
if len(data_x) == 1:
return
if args.xkcd:
with plt.xkcd():
do_plot(data_x, data_y, data_z, args)
else:
do_plot(data_x, data_y, data_z, args)
if __name__ == '__main__':
main()