-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_pnp.py
386 lines (334 loc) · 18.4 KB
/
main_pnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import sys
import tensorflow as tf
import dataloading as ld
import losses
import numpy as np
import time
from errors import ErrorLogger
import os
import pdb
import pickle
import argparse
from deep_cnn import build_net18
import admm
from sparse_cnn import make_sparse_cnn_pnp # Adapted to PnP-Depth
from PIL import Image
import re
## Inputs
def sparsify(x, m, prob):
mask = tf.distributions.Bernoulli(probs = tf.fill(tf.shape(x)[0:2], prob),
dtype = tf.bool).sample()
mask = tf.expand_dims(mask, 2)
mask = tf.tile(mask, [1, 1, x.get_shape()[2]])
mask = tf.cast(tf.logical_and(mask, tf.greater(m, 0)), tf.float32)
return mask, mask*x
## TRAINING
def main(result_dir, resume_file, resume_epoch, nepochs, f, input_type, model_type,
num_iters, admm_filters, admm_strides, admm_kernels, lr, val_only, train_size,
val_size, dataset, redraw_subset, batch_size, repeat, admm_tv_loss, no_vis_output,
val_output_every, png_output, png_output_dir):
def clip(rgb):
return np.maximum(np.minimum(rgb, 255), 0)
if dataset == 'kitti':
trainfiles = ld.get_train_paths('/dataset/kitti-depth/tfrecords/train')
num_train_examples = ld.count_records(trainfiles)
print('Got {} training files with {} records'.format(len(trainfiles), num_train_examples))
valfiles = ld.get_train_paths('/dataset/kitti-depth/tfrecords/val')
num_val_examples = ld.count_records(valfiles)
print('Got {} validation files with {} records'.format(len(valfiles), num_val_examples))
make_datasets = lambda mkinpts, bs: ld.make_kitti_datasets(mkinpts, trainfiles, valfiles,
bs, repeat = repeat)
elif dataset == 'kitti_test_selection':
test_root = '/dataset/kitti-depth/depth_selection/test_depth_completion_anonymous'
num_train_examples = len(ld.get_train_paths(test_root + '/velodyne_raw', suffix='png'))
num_val_examples = num_train_examples
make_datasets = lambda mkinpts, bs : ld.make_selection_datasets(mkinpts, test_root)
elif dataset == 'kitti_val_selection':
val_root = '/dataset/kitti-depth/depth_selection/val_selection_cropped'
num_train_examples = len(ld.get_train_paths(val_root + '/velodyne_raw', suffix='png'))
num_val_examples = num_train_examples
make_datasets = lambda mkinpts, bs : ld.make_selection_datasets(mkinpts, val_root)
print('Got {} training examples'.format(num_train_examples))
print('Got {} validation examples'.format(num_val_examples))
if train_size < 0:
train_size = num_train_examples
if val_size < 0:
val_size = num_val_examples
if input_type == 'raw':
def make_raw_inputs(urgb, m, g, mraw, raw, s):
m1 = mraw
return urgb, m1, m1 * raw, m, g, s
make_inputs = make_raw_inputs
elif input_type == 'raw_frac':
def make_raw_frac_inputs(urgb, m, g, mraw, raw, s):
m1, d1 = sparsify(raw, mraw, f)
return urgb, m1, d1, m, g, s
make_inputs = make_raw_frac_inputs
if model_type == 'admm':
def build_admm(m1, d1, m2, d2, is_training):
return admm.make_admm_pnp(m1, d1, m2, d2, # Adapt to PnP-Depth
tv_loss = admm_tv_loss,
num_iters = num_iters, filters = admm_filters,
strides = admm_strides, kernels = admm_kernels)
build_model = build_admm
elif model_type == 'cnn_deep':
build_model = lambda m1, d1, m2, d2, is_training : build_net18(m1, d1, m2, d2, is_training)
elif model_type == 'sparse_cnn':
build_model = lambda m1, d1, m2, d2, is_training : make_sparse_cnn(m1, d1, m2, d2)
train_log = os.path.join(result_dir, 'train_log.txt')
train_errors = ErrorLogger(['rmse', 'grmse', 'mae', 'gmae', 'mre',
'del_1', 'del_2', 'del_3', ],
[(8,5), (8,5), (8,5), (8,5), (8,5),
(5,2), (5,2), (5,2)], train_log)
val_log = os.path.join(result_dir, 'val_log.txt')
val_errors = ErrorLogger(['rmse', 'grmse', 'mae', 'gmae', 'mre',
'del_1', 'del_2', 'del_3', ],
[(8,5), (8,5), (8,5), (8,5), (8,5),
(5,2), (5,2), (5,2)], val_log)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 1.0
config.gpu_options.allow_growth = True
with tf.Graph().as_default(), tf.Session(config=config) as sess:
train_dataset, val_dataset, take_pl = make_datasets(make_inputs, batch_size)
print(train_dataset.output_shapes)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types,
train_dataset.output_shapes)
rgb_t, m1_t, d1_t, ground_mask, ground, s_t = iterator.get_next()
train_data_init_op = iterator.make_initializer(train_dataset)
val_data_init_op = iterator.make_initializer(val_dataset)
is_training = tf.placeholder(tf.bool, name='is_training')
output, loss, monitor, summary, model_train_op = build_model(m1_t, d1_t,
ground_mask, ground,
is_training)
mse_t = losses.mse_loss(output, ground, ground_mask)
mae_t = losses.mae_loss(output, ground, ground_mask)
mre_t = losses.mre_loss(output, ground, ground_mask)
rmse_t = losses.rmse_loss(output, ground, ground_mask)
gmae_t = losses.mae_loss(output, ground, m1_t * ground_mask)
grmse_t = losses.rmse_loss(output, ground, m1_t * ground_mask)
del_1_t, del_2_t, del_3_t = losses.deltas(output, ground, ground_mask, 1.01)
errors_t = { 'rmse' : rmse_t, 'mae' : mae_t, 'mre' : mre_t,
'del_1' : del_1_t, 'del_2' : del_2_t, 'del_3' : del_3_t,
'grmse' : grmse_t, 'gmae' : gmae_t}
optimizer = tf.train.AdamOptimizer(learning_rate = lr)
if model_train_op is not None:
train_op = model_train_op
else:
extra_train_op = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_train_op):
train_op = optimizer.minimize(loss)
saver = tf.train.Saver(max_to_keep = nepochs + 1)
sess.run(tf.global_variables_initializer())
if resume_file:
print('Restoring from {}'.format(resume_file))
saver.restore(sess, resume_file)
best_rmse = float('inf')
best_epoch = -1
train_take = ld.make_take(num_train_examples, train_size)
val_take = ld.make_take(num_val_examples, val_size)
num_epochs = nepochs
if val_only:
num_epochs = 1
for i in range(resume_epoch, num_epochs):
if not val_only:
num_batches = train_size // batch_size
batchnum = 1
if redraw_subset:
print('Redrawing Subset')
train_take = ld.make_take(num_train_examples, train_size)
train_errors.clear()
sess.run(train_data_init_op, feed_dict = { take_pl : train_take })
while True:
try:
start = time.time()
(err, pred, mg, g, rgb,
m1, d1, m, s, _) = sess.run([errors_t, output,
ground_mask, ground,
rgb_t,
m1_t, d1_t,
monitor, summary,
train_op],
feed_dict = { is_training : True})
print('{}s to run'.format(time.time() - start))
train_errors.update(err)
print('{} in input, {} in ground truth'.
format(np.mean(np.sum(m1 > 0, axis = (1,2,3))),
np.mean(np.sum(mg > 0, axis = (1,2,3)))))
print('Epoch {}, Batch {}/{} {}'.
format(i, batchnum, num_batches,
train_errors.update_log_string(err)))
for key, value in m.items():
print('{}: {}'.format(key, value))
if batchnum % 500 == 0:
filename = 'train_output{}.pickle'.format(batchnum)
with open(os.path.join(result_dir, filename), 'wb') as f:
pickle.dump({ 'rgb' : clip(rgb[0, :, :, :]),
'd1' : m1[0, :, :, :]*d1[0, :, :, :],
'm0' : s['m'][0] if 'm' in s else None,
'ground' : g[0, :, :, :],
'pred' : pred[0, :, :, :],
'summary' : s }, f)
batchnum += 1
except tf.errors.OutOfRangeError:
break
train_errors.log()
with open(os.path.join(result_dir, 'summary.pickle'), 'wb') as f:
pickle.dump(s, f)
print('Done epoch {}, RMSE = {}'.format(i, train_errors.get('rmse')))
save_path = saver.save(sess, os.path.join(result_dir, '{:02}-model.ckpt'.format(i)))
print('Model saved in {}'.format(save_path))
num_batches = val_size
batchnum = 1
val_errors.clear()
sess.run(val_data_init_op, feed_dict = { take_pl : val_take })
best_batch = float('inf')
worst_batch = 0
rmses = {}
i = 0
while True:
try:
start = time.time()
(err, pred, g,
rgb, m1, d1, m, s, seqid) = sess.run([errors_t, output,
ground, rgb_t,
m1_t, d1_t, monitor, summary,
s_t],
feed_dict = { is_training : False })
print('{}s to run'.format(time.time() - start))
rmses[i] = err['rmse']
i = i + 1
val_errors.update(err)
print('{}/{} {}'.format(batchnum, num_batches,
val_errors.update_log_string(err)))
for key, value in m.items():
print('{}: {}'.format(key, value))
if png_output:
ID = os.path.basename(seqid[0].decode())
filename = os.path.join(png_output_dir, ID)
out = np.round(np.squeeze(pred[0, :, :, 0])*256.0);
out = out.astype(np.int32)
Image.fromarray(out).save(filename, bits=16)
if not no_vis_output:
vis_log = { 'rgb' : rgb[0, :, :, :],
'd1' : m1[0, :, :, :]*d1[0, :, :, :],
'ground' : g[0, :, :, :],
'pred' : pred[0, :, :, :] }
if 'm' in s:
vis_log['m0'] = s['m'][0]
if err['rmse'] < best_batch:
best_batch = err['rmse']
filename = os.path.join(result_dir,
'val_best.pickle')
with open(filename, 'wb') as f:
pickle.dump(vis_log, f)
if err['rmse'] > worst_batch:
worst_batch = err['rmse']
filename = os.path.join(result_dir,
'val_worst.pickle')
with open(filename, 'wb') as f:
pickle.dump(vis_log, f)
if batchnum % val_output_every == 0:
filename = os.path.join(result_dir,
'val_output-{:04}.pickle'.format(batchnum))
with open(filename, 'wb') as f:
pickle.dump(vis_log, f)
batchnum += 1
except tf.errors.OutOfRangeError:
break
val_errors.log()
if val_errors.get('rmse') < best_rmse and not val_only:
best_epoch = i
best_rmse = val_errors.get('rmse')
save_path = saver.save(sess, os.path.join(result_dir, 'best-model.ckpt'))
print('Best model saved in {}'.format(save_path))
with open(os.path.join(result_dir, 'errors.pickle'), 'wb') as f:
pickle.dump(rmses, f)
print('Validation RMSE: {}'.format(val_errors.get('rmse')))
parser = argparse.ArgumentParser()
parser.add_argument('dir', help = 'the directory to store all of the output')
parser.add_argument('--type', help = 'the type of model to use',
choices = ['admm', 'cnn_deep', 'sparse_cnn'],
default = 'admm')
parser.add_argument('--input', help = ("the structure of the model input (usually ortho for"
"admm and subset for cnn"),
default = 'raw', choices = ['raw', 'raw_frac'])
parser.add_argument('--frac',
help = 'the fraction of samples to include as input for the raw_frac input',
type = float, default = 0.5)
parser.add_argument('--num_iters',
help = 'the number of admm iterations to perform',
type = int, default = 10)
parser.add_argument('--admm_filters',
help = 'the number of filters for the admm or cnn to learn',
type = int, nargs = '+', default = [ 8, 16, 32 ] )
parser.add_argument('--admm_strides',
help = 'the stride of the admm or cnn convolutions',
type = int, nargs = '+', default = [ 2, 2, 2 ])
parser.add_argument('--admm_kernels',
help = 'the kernel sizes for the admm layers',
type = int, nargs = '+', default = [ 11, 5, 3 ])
parser.add_argument('--admm_tv_loss',
help = ('the weight given to the total variation loss for admm output,'
'if None then the no TV loss is used'),
default = 0.1, type = float)
parser.add_argument('--resume_file',
help = ('the checkpoint file to resume from,'
'if not given model is trained from scratch'),
default = None)
parser.add_argument('--resume_epoch',
help = ('the epoch number to start at,'
'useful when resuming part way through training'),
default = 0, type = int)
parser.add_argument('--learning_rate',
help = 'the learning rate for the ADAM optimizer',
default = 0.001, type = float)
parser.add_argument('--val_only',
help = 'only run validation with no training',
default = False, action = 'store_true')
parser.add_argument('--val_size',
help = 'the number of validation examples to test (-1 for all)',
default = -1, type = int)
parser.add_argument('--train_size',
help = 'the number of train examples to use (-1 for all)',
default = -1, type = int)
parser.add_argument('--dataset',
help = 'the dataset to train on',
default = 'kitti', choices = ['kitti', 'kitti_test_selection',
'kitti_val_selection'])
parser.add_argument('--num_epochs',
help = 'The number of epochs to train for',
default = 6, type = int)
parser.add_argument('--dont_redraw_subset',
help = 'If given, redraw the training subset before each epoch',
action = 'store_false')
parser.add_argument('--batch_size',
help = 'the batch size',
default = 16, type = int)
parser.add_argument('--repeat_dataset',
help = 'the number of times to repeat a dataset before running validation',
default = 1, type = int)
parser.add_argument('--no_vis_output',
help = 'turn off writing pickle files of visual outputs',
default = False, action = 'store_true')
parser.add_argument('--val_output_every',
help = 'the interval in between successive validation outputs',
default = 500, type = int)
parser.add_argument('--png_output',
help = ('if given then validation predictions will be written'
' to png files for evaluation'),
action = 'store_true')
parser.add_argument('--png_output_dir',
help = 'the directory to store png outputs',
default = 'pngs')
args = parser.parse_args()
main(args.dir, resume_file = args.resume_file, resume_epoch = args.resume_epoch,
f = args.frac, input_type = args.input, model_type = args.type,
num_iters = args.num_iters, admm_filters = args.admm_filters, admm_strides=args.admm_strides,
admm_kernels = args.admm_kernels,
lr = args.learning_rate, val_only = args.val_only, val_size = args.val_size,
train_size = args.train_size, dataset = args.dataset, nepochs = args.num_epochs,
redraw_subset = args.dont_redraw_subset, batch_size = args.batch_size,
repeat = args.repeat_dataset,
admm_tv_loss = args.admm_tv_loss, no_vis_output = args.no_vis_output,
val_output_every = args.val_output_every,
png_output = args.png_output, png_output_dir = args.png_output_dir)